By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)
Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)
Right now, for such not-fully-interleaved loads we just use the costs
for fully-interleaved loads. But at least **in general**,
that is obviously overly pessimistic, because **in general**,
not all the shuffles needed to perform the full interleaving
will end up being live.
So what this does, is naively scales the interleaving cost
by the fraction of the live members. I believe this should still result
in the right ballpark cost estimate, although it may be over/under -estimate.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D112307
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/s5b6E6jsP - for intels `Block RThroughput: <=32.0`; for ryzens, `Block RThroughput: <=24.0`
So could pick cost of `32`
For store we have:
https://godbolt.org/z/efh99d93b - for intels `Block RThroughput: <=48.0`; for ryzens, `Block RThroughput: <=32.0`
So we could pick cost of `48`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111942
And another attempt to start untangling this ball of threads around gather.
There's `TTI::prefersVectorizedAddressing()`hoop, which confusingly defaults to `true`,
which tells LV to try to vectorize the addresses that lead to loads,
but X86 generally can not deal with vectors of addresses,
the only instructions that support that are GATHER/SCATTER,
but even those aren't available until AVX2, and aren't really usable until AVX512.
This specializes the hook for X86, to return true only if we have AVX512 or AVX2 w/ fast gather.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111546
While i've modelled most of the relevant tuples for AVX2,
that only covered fully-interleaved groups.
By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)
Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)
As we have established over the course of last ~70 patches, (wow)
`BaseT::getInterleavedMemoryOpCos()` is absolutely bogus,
it is usually almost an order of magnitude overestimation,
so i would claim that we should at least use the hardcoded costs
of fully interleaved load groups.
We could go further and adjust them e.g. by the number of demanded indices,
but then i'm somewhat fearful of underestimating the cost.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111174
The coverage could have cumulative explosion here,
so i'm adding only the most basic cases,
and hoping it's enough, though more can be added if needed.