As suggested on D111024, we should treat getCmpSelInstrCost calls without a specific predicate as matching the worst case predicate cost.
These regressions will be addressed with a mixture of D111024 and fixing other specific getCmpSelInstrCost calls to have realistic predicates.
These are meant to check a future patch which recurses through operands of SCEVs, but because all SCEVs are trivially bounded by function entry, we need to arrange the trivial scope not to be valid. (i.e. we specifically need a lower defining scope)
The coverage could have cumulative explosion here,
so i'm adding only the most basic cases,
and hoping it's enough, though more can be added if needed.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1jfGddcre - for intels `Block RThroughput: =36.0`; for ryzens, `Block RThroughput: =12.0`
So could pick cost of `36`
For store we have:
https://godbolt.org/z/ao9srMT8r - for intels `Block RThroughput: =30.0`; for ryzens, `Block RThroughput: =12.0`
So we could pick cost of `30`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111094
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/rc8jYxW6M - for intels `Block RThroughput: =18.0`; for ryzens, `Block RThroughput: =6.0`
So could pick cost of `18`.
For store we have:
https://godbolt.org/z/9PhPEr65G - for intels `Block RThroughput: =15.0`; for ryzens, `Block RThroughput: =6.0`
So we could pick cost of `15`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111093
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/onese7rec - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =3.0`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/bMd7dddnT - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=6.0`
So we could pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111092
This one required quite a bit of an assembly surgery, but i think it's in the right ballpark..
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/na97Kb96o - for intels `Block RThroughput: <=64.0`; for ryzens, `Block RThroughput: <=32.0`
So could pick cost of `64`.
For store we have:
https://godbolt.org/z/GG1WeoKar - for intels `Block RThroughput: =66.0`; for ryzens, `Block RThroughput: <=27.5`
So we could pick cost of `66`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111091
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/jK85GWKaK - for intels `Block RThroughput: =31.0`; for ryzens, `Block RThroughput: <=17.0`
So could pick cost of `31`.
For store we have:
https://godbolt.org/z/hPWWhEEf9 - for intels `Block RThroughput: =33.0`; for ryzens, `Block RThroughput: <=13.8`
So we could pick cost of `33`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111089
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/szEj1ceee - for intels `Block RThroughput: =15.0`; for ryzens, `Block RThroughput: <=8.8`
So could pick cost of `15`.
For store we have:
https://godbolt.org/z/81bq4fTo1 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=10.0`
So we could pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111087
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/aec96Thee - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.3`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/aec96Thee - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=3.0`
So we could pick cost of `9`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111083
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/3M3hbq7n8 - for intels `Block RThroughput: =20.0`; for ryzens, `Block RThroughput: =8.0`
So could pick cost of `20`.
For store we have:
https://godbolt.org/z/zvnPYWTx7 - for intels `Block RThroughput: =20.0`; for ryzens, `Block RThroughput: =8.0`
So we could pick cost of `20`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111076
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/MTKdzjvnr - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So could pick cost of `8`.
For store we have:
https://godbolt.org/z/cMYEvqoah - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So we could pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111075
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/z197317d1 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =2.0`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/8dzszjf9q - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=4.0`
So we could pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111073
This one required quite a bit of assembly surgery, but the trend continues, so i think this is right.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/EKWdj8cKT - for intels `Block RThroughput: <=32.0`; for ryzens, `Block RThroughput: <=24.0`
So could pick cost of `32`.
For store we have:
https://godbolt.org/z/zj4bb9P75 - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=16.0`
So we could pick cost of `32`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111064
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/a6rxMG6ec - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=12.0`
So could pick cost of `16`.
For store we have:
https://godbolt.org/z/ced1bdqc9 - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=8.0`
So we could pick cost of `16`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111063
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/avq1oz98W - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: =4.0`
So could pick cost of `8`.
For store we have:
https://godbolt.org/z/89PGMc1qs - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=6.0`
So we could pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111061
Finally, we are getting to the heavy-hitter stuff!
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/7crGWoar6 - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So could pick cost of `4`.
For store we have:
https://godbolt.org/z/T8aq3MszM - for intels `Block RThroughput: =5.0`; for ryzens, `Block RThroughput: <=2.0`
So we could pick cost of `5`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111060
When determining NoAlias based on object size and dereferenceability
information, we can ignore frees for the same reason we can ignore
possible null pointers (if null is not a valid pointer): Actually
accessing the null pointer / freed pointer would be immediate UB,
and AA results are only valid under the assumption of an access.
This addresses a minor regression from D110745.
Differential Revision: https://reviews.llvm.org/D111028
This required huge amount of assembly surgery, but i think this is about right.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/z11crMEcj - for intels `Block RThroughput: =20.0`; for ryzens, `Block RThroughput: <=18.0`
So could pick cost of `25`.
For store we have:
https://godbolt.org/z/eqT4ze3j4 - for intels `Block RThroughput: =24.0`; for ryzens, `Block RThroughput: <=16.0`
So we could pick cost of `24`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111031
This one required quite a bit of assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/oYWv4cTnK - for intels `Block RThroughput: =10.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `10`.
For store we have:
https://godbolt.org/z/33GMhrsG9 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111027
This one required quite a bit of assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/Tce3osvcz - for intels `Block RThroughput: =5.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `5`.
For store we have:
https://godbolt.org/z/oc3arEcnE - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111026
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/sz5qdKnr4 - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `1`.
For store we have:
https://godbolt.org/z/Kzdjff63v - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111025
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/5fqrh4qqo - for intels `Block RThroughput: =14.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `14`.
For store we have:
https://godbolt.org/z/5fqrh4qqo - for intels `Block RThroughput: =22.0`; for ryzens, `Block RThroughput: <=16.0`
So pick cost of `22`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111022
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/zdz5Ga6fs - for intels `Block RThroughput: =7.0`; for ryzens, `Block RThroughput: <=6.0`
So pick cost of `7`.
For store we have:
https://godbolt.org/z/qn71513ac - for intels `Block RThroughput: =11.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `11`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111021
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/d8PdhEszo - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/WojonfG5n - for intels `Block RThroughput: =5.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `5`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111020
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/z8qa14bs3 - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: =1.5`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/GYGajoc4K - for intels `Block RThroughput: <=4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111019
This addresses a comment from review on D109845. Even for SCEVs which we can't find true bounds without recursing through operands, entry to the function forms a trivial upper bound. In some cases, this trivial bound is enough to prove safety of flag inference.
This is a followon to D109845. With that landed, we will have fixed all known instances of pr51817, and can thus start inferring flags more aggressively with greatly reduced risk of miscompiles. This patch simply applies the same inference logic used in that patch to our other major flag inference path.
We can still do much better here (on both paths), but this is our first step.
Differential Revision: https://reviews.llvm.org/D111003
This fixes a violation of the wrap flag rules introduced in c4048d8f. This is an alternate fix to D106852.
The basic problem being fixed is that we infer a set of flags which is valid at some inner scope S1 (usually by correctly propagating them from IR), and then (incorrectly) extend them to a SCEV in scope S2 where S1 != S2. This is not in general safe per the wrap flags semantics recently defined.
In this patch, I include a simple inference step to handle the case where we can prove that S2 is the preheader of the loop S1, and that entry into S2 implies execution of S1. See the code for a more detailed explanation.
One worry I have with this patch is that I might be over-fitting what shows up in tests - and thus hiding negative impact we'd see in the real world. My best defense is that the rule used here very closely follows the one used to propagate the flags from IR to the inner add to start with, and thus if one is reasonable, so probably is the other. Curious what others think about that piece.
The test diffs are roughly as expected. Mostly analysis only, with two transform changes. Oddly, the result looks better in the loop-idiom test, and I don't understand the PPC output enough to have tell. Nothing terrible looking though. (For context, without the scope inference peephole, the test delta includes a couple of vectorization tests. Again, not super concerning, but slightly more so.)
Differential Revision: https://reviews.llvm.org/D109845
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/rMaYr67hz - for intels `Block RThroughput: =56.0`; for ryzens, `Block RThroughput: <=17.8`
So pick cost of `56`.
For store we have:
https://godbolt.org/z/eMsbKqnvv - for intels `Block RThroughput: <=54.0`; for ryzens, `Block RThroughput: <=15.0`
So pick cost of `54`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111018
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1T6MMzeh3 - for intels `Block RThroughput: =28.0`; for ryzens, `Block RThroughput: <=8.5`
So pick cost of `28`.
For store we have:
https://godbolt.org/z/1T6MMzeh3 - for intels `Block RThroughput: <=27.0`; for ryzens, `Block RThroughput: <=7.0`
So pick cost of `27`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111017
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/Mh9MnnT8W - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=2.3`
So pick cost of `9`.
For store we have:
https://godbolt.org/z/Mh9MnnT8W - for intels `Block RThroughput: <=12.0`; for ryzens, `Block RThroughput: <=3.3`
So pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111016
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/sP4j1173f - for intels `Block RThroughput: =7.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `7`.
For store we have:
https://godbolt.org/z/sP4j1173f - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111015
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/xnE988aej - for intels `Block RThroughput: =5.0`; for ryzens, `Block RThroughput: <=2.5`
So pick cost of `5`.
For store we have:
https://godbolt.org/z/rMGT31Tnh - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111014
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/c1jjKqP7b - for intels `Block RThroughput: <=82.0`; for ryzens, `Block RThroughput: <=26.0`
So pick cost of `82`.
For store we have:
https://godbolt.org/z/YM4ErY8x7 - for intels `Block RThroughput: <=90.0`; for ryzens, `Block RThroughput: <=25.5`
So pick cost of `90`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111013
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/Gz8hhqfTM - for intels `Block RThroughput: <=43.0`; for ryzens, `Block RThroughput: <=14.0`
So pick cost of `43`.
For store we have:
https://godbolt.org/z/9vrdssYa8 - for intels `Block RThroughput: <=27.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `27`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111012
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/v98qPTTf6 - for intels `Block RThroughput: =18.0`; for ryzens, `Block RThroughput: =6.0`
So pick cost of `18`.
For store we have:
https://godbolt.org/z/rn5T9E8q6 - for intels `Block RThroughput: <=16.0`; for ryzens, `Block RThroughput: <=4.5`
So pick cost of `16`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111011
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/4sWhs396o - for intels `Block RThroughput: =14.0`; for ryzens, `Block RThroughput: <=7.0`
So pick cost of `14`.
For store we have:
https://godbolt.org/z/4sWhs396o - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `9`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111010
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/jvj6jzns5 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/ros7eebMP - for intels `Block RThroughput: =7.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `7`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111008
While we already model this tuple, the load cost is divergent from reality, so fix it.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/zWMhhnPYa - for intels `Block RThroughput: =56.0`; for ryzens, `Block RThroughput: <=24.0`
So pick cost of `56`.
For store we have:
https://godbolt.org/z/vnqqjWx51 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110971
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/TrGW7cKsE - for intels `Block RThroughput: =24.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `24`.
For store we have:
https://godbolt.org/z/Mh7qaqEfe - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110970
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/v7746Wcf7 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=6.0`
So pick cost of `12`.
For store we have:
https://godbolt.org/z/aEeEohEbP - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110969
While we already model this tuple, the store cost is divergent from reality, so fix it.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1n4bPh7Tn - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/r8K9sveqo - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110968
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/KP6nn36zs - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/ov95zhrq6 - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110966
For VF=16, costs are correct.
For VF=32, load cost is divergent.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/qKjevqf4W - for intels `Block RThroughput: <=14.0`; for ryzens, `Block RThroughput: <=4.5`
So pick cost of `14`.
For store we have:
https://godbolt.org/z/xTssTq319 - for intels `Block RThroughput: =13.0`; for ryzens, `Block RThroughput: <=5.5`
So pick cost of `13`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110961
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1jeocxj55 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/fr7xfa3K5 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110960
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/obWz3PrfK - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=1.5`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/orjPshn3h - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110958
While we already model this tuple, the values are divergent from reality, so fix them.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/WYscYMcW4 - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=1.5`
So pick cost of `3`.
For store we have:
https://godbolt.org/z/e9qvYdbbs - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110956
This fixes a violation of the wrap flag rules introduced in c4048d8f. This was also noted in the (very old) PR23527.
The issue being fixed is that we assume the inbound flag on any GEP assumes that all users of *any* gep (or add) which happens to map to that SCEV would also be UB if the (other) gep overflowed. That's simply not true.
In terms of the test diffs, I don't see anything seriously problematic. The lost flags are expected (given the semantic restriction on when its legal to tag the SCEV), and there are several cases where the previously inferred flags are unsound per the new semantics.
The only common trend I noticed when looking at the deltas is that by not considering branch on poison as immediate UB in ValueTracking, we do miss a few cases we could reclaim. We may be able to claw some of these back with the follow ideas mentioned in PR51817.
It's worth noting that most of the changes are analysis result only changes. The two transform changes are pretty minimal. In one case, we miss the opportunity to infer a nuw (correctly). In the other, we fail to fold an exit and produce a loop invariant form instead. This one is probably over-reduced as the program appears to be undefined in practice, and neither before or after exploits that.
Differential Revision: https://reviews.llvm.org/D109789
This code is attempting to prove that I must execute if we enter the defining scope of the SCEV which will be created from I. In the case where it found a defining addrec scope, it had a rather odd restriction that all of the other operands must be loop invariant in that addrec's loop.
As near as I can tell here, we really only need a upper bound on the defining scope. If we can prove the stronger property, then we must also have proven the property on the exact defining scope as well.
In practice, the actual effect of this change is narrow. The compile time restriction at the top of the routine basically limits us to I being an arithmetic in some loop L with both an addrec operand in L, and a unknown operands in L. Possible to demonstrate, but the main value of the change is removing unneeded code.
Differential Revision: https://reviews.llvm.org/D110892
When taking into account the fact that GEP indices are truncated
to 32-bits in this test, the "path dependence" goes away, so
inferring MustAlias for all pointers would be correct. As this
goes against the spirit of the test, change it to extend from
i16 instead.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1WMTojvfW - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `16`.
For store we have:
https://godbolt.org/z/1WMTojvfW - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=16.0`
So pick cost of `16`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110840
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/PGYbYKPq8 - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `8`.
For store we have:
https://godbolt.org/z/PGYbYKPq8 - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110838
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/j5co1qWEW - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/j5co1qWEW - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110837
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/8a1cfGeMn - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/jMdcM47bx - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `2`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110835
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
Here for `store` pattern we are starting to have spilling,
so accurate modelling may be problematic,
although if i drop the spilling, the measurements don't change.
For load we have:
https://godbolt.org/z/1oTTnncbx - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=8.0`
So pick cost of `16`.
For store we have:
https://godbolt.org/z/1oTTnncbx - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: =8.0`
So pick cost of `16`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110761
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/M9eev3xe8 - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `8`.
For store we have:
https://godbolt.org/z/M9eev3xe8 - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: =4.0`
So pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110756
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110755
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `2`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110754
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/4rY96hnGT - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/vbo37Y3r9 - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: =0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110753
This patch additional tests with i64 GEP indices for 32 bit pointers.
@mustalias_overflow_in_32_bit_add_mul_gep highlights a case where
BasicAA currently incorrectly determines noalias.
Modeled in Alive2 for 32 bit pointers: https://alive2.llvm.org/ce/z/HHjQgb
Modeled in Alive2 for 64 bit pointers: https://alive2.llvm.org/ce/z/DoWK2c
The expansion for these was updated in https://reviews.llvm.org/D47927 but the cost model was not adjusted.
I believe the cost model was also incorrect for the old expansion.
The expansion prior to D47927 used 3 icmps using LHS, RHS, and Result
to calculate theirs signs. Then 2 icmps to compare the signs. Followed
by an And. The previous cost model was using 3 icmps and 2 selects.
Digging back through git blame, those 2 selects in the cost model used to
be 2 icmps, but were changed in https://reviews.llvm.org/D90681
Differential Revision: https://reviews.llvm.org/D110739
The information can be implicit (from `ValueTracking`) or explicit.
This implements the backend part of the following RFC
https://groups.google.com/g/llvm-dev/c/T9o51zB1JY.
We still need to settle on how to best represent the information in the
IR, but this is a separate discussion.
Differential Revision: https://reviews.llvm.org/D109746
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/xz6x7c35P - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=2.5`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/xz6x7c35P - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110709
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/a9hv4z47v - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `4`.
For store we have:
https://godbolt.org/z/6GfPn1b79 - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `3`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110708
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
Identical to VF=2.
For load we have:
https://godbolt.org/z/4TEbdzbMM - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/MYfzGPf3Y - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: <=0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110705
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
Identical to VF=2.
For load we have:
https://godbolt.org/z/sGE41GYo7 - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/ba5r3s9xa - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: <=0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110704
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/caKqjr9hb - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/6TTn3eKj8 - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: <=0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110702
getScalarizationOverhead() results in a somewhat better cost estimation than counting the insertion/extraction costs directly. Notably, this is still overestimating the costs.
Original Patch by: @lebedev.ri (Roman Lebedev)
Differential Revision: https://reviews.llvm.org/D110713
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For this tuple, measuring becomes problematic since there's a lot of spilling going on,
but apparently all these memory ops do not affect worst-case estimate at all here.
For load we have:
https://godbolt.org/z/5qGb9odP6 - for intels `Block RThroughput: <=106.0`; for ryzens, `Block RThroughput: <=34.8`
So pick cost of `106`.
For store we have:
https://godbolt.org/z/KrWcv4Ph7 - for intels `Block RThroughput: =58.0`; for ryzens, `Block RThroughput: <=20.5`
So pick cost of `58`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110593
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/3Tc5s897j - for intels `Block RThroughput: =39.0`; for ryzens, `Block RThroughput: <=13.5`
So pick cost of `39`.
For store we have:
https://godbolt.org/z/fo1h9E67e - for intels `Block RThroughput: =21.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `21`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110592
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1Wcaf9c7T - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=4.5`
So pick cost of `9`.
For store we have:
https://godbolt.org/z/1Wcaf9c7T - for intels `Block RThroughput: =15.0`; for ryzens, `Block RThroughput: <=6.0`
So pick cost of `15`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110591
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/bhscej4WM - for intels `Block RThroughput: =13.0`; for ryzens, `Block RThroughput: <=7.0`
So pick cost of `13`.
For store we have:
https://godbolt.org/z/Yf4Pfnxbq - for intels `Block RThroughput: =10.0`; for ryzens, `Block RThroughput: <=3.5`
So pick cost of `10`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110590
This reverts commit 8fdac7cb7a.
The issue causing the revert has been fixed a while ago in 60b852092c.
Original message:
Now that SCEVExpander can preserve LCSSA form,
we do not have to worry about LCSSA form when
trying to look through PHIs. SCEVExpander will take
care of inserting LCSSA PHI nodes as required.
This increases precision of the analysis in some cases.
Reviewed By: mkazantsev, bmahjour
Differential Revision: https://reviews.llvm.org/D71539
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For this tuple, measuring becomes problematic since there's a lot of spilling going on,
but apparently all these memory ops do not affect worst-case estimate at all here.
For load we have:
https://godbolt.org/z/zP4hd8MT6 - for intels `Block RThroughput: =150.0`; for ryzens, `Block RThroughput: <=59`
So pick cost of `150`.
For store we have:
https://godbolt.org/z/vKb8zTK8E - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=24.0`
So pick cost of `64`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110548
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/Wd9cKab83 - for intels `Block RThroughput: =75.0`; for ryzens, `Block RThroughput: <=29.5`
So pick cost of `75`. (note that `# 32-byte Reload` does not affect throughput there.)
For store we have:
https://godbolt.org/z/Wd9cKab83 - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=12.0`
So pick cost of `32`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110543
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/dd8T5P471 - for intels `Block RThroughput: =33.0`; for ryzens, `Block RThroughput: <=14.5`
So pick cost of `33`.
For store we have:
https://godbolt.org/z/zPxcKWhn4 - for intels `Block RThroughput: =10.0`; for ryzens, `Block RThroughput: <=6.0`
So pick cost of `10`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110541
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/rnsf639Wh - for intels `Block RThroughput: =17.0`; for ryzens, `Block RThroughput: <=7.5`
So pick cost of `17`.
For store we have:
https://godbolt.org/z/565KKrcY6 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110537
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/5EYc6r9nh - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.0`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/z61e5d6GE - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110536
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/q6GbK89br - for intels `Block RThroughput: =18.0`; for ryzens, `Block RThroughput: <=7.0`
So pick cost of `18`.
For store we have:
https://godbolt.org/z/Yzfoo5TnW - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110507
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/Y1E7qnjz8 - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=3.5`
So pick cost of `9`.
For store we have:
https://godbolt.org/z/Y1E7qnjz8 - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110506
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/e5YE99a4P - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `6`.
For store we have:
https://godbolt.org/z/3vM4KsE1n - for intels `Block RThroughput: =3.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `3`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110505
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1j3nf3dro - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/4n1zvP37j - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: <=0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110504
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/M8vEKs5jY - for intels `Block RThroughput: =2.0`;
for ryzens, `Block RThroughput: <=1.0`
So pick cost of `2`.
For store we have:
https://godbolt.org/z/Kx1nKz7je - for intels `Block RThroughput: =1.0`;
for ryzens, `Block RThroughput: <=0.5`
So pick cost of `1`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D103144
Update the costs to match the codegen from combineMulToPMADDWD - not only can we use PMADDWD is its zero-extended, but also if its a constant or sign-extended from a vXi16 (which can be replaced with a zero-extension).
Only the most recent cpus support really 1cy 64-bit multiplies, and the X64 cost table represents a realistic worst case. The 1cy value was also discouraging vectorization when most vXi64 PMULDQ expansions aren't actually slower than scalarization.
Noticed while investigating PR51436.
A logic incompleteness may lead MemorySSA to be too conservative
in its results. Specifically, when dealing with a call of kind
`call i32 bitcast (i1 (i1)* @test to i32 (i32)*)(i32 %1)`, where
the function `test` is declared with readonly attribute, the
bitcast is not looked through, obscuring function attributes. Hence,
some methods of CallBase (e.g., doesNotReadMemory) could provide
suboptimal results.
Differential Revision: https://reviews.llvm.org/D109888
Mostly this fixes cases where !noalias or !alias.scope were passed
a scope rather than a scope list. In some cases I opted to drop
the metadata entirely instead, because it is not really relevant
to the test.
Based off the worse case numbers generated by D103695, the AVX2/512 bit reversing/counting costs were higher than necessary (based off instruction counts instead of actual throughput).
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.
This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.
Fixes PR50296, PR50288.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D102266
This bit of code is incredibly suspicious. It allows fully unknown (but potentially negative) steps, but not steps known to be negative. The comment about scev flag inference is worrying, but also not correct to my knowledge.
At best, this might be covering up some related miscompile. However, there's no test in tree for it, the review history doesn't include obvious motivation, and the C++ example doesn't appear to give wrong results when hand translated to IR. I think it's time to remove this and see what falls out.
During review, there were concerns raised about the correctness of the corresponding signed case. This change was deliberately narrowed to the unsigned case which has been auditted and appears correct for negative values. We need to get back to the known-negative signed case, but that'll be a future patch if nothing falls out from this one.
Differential Revision: https://reviews.llvm.org/D104140
In general, howManyLessThans doesn't really want to work with pointers
at all; the result is an integer, and the operands of the icmp are
effectively integers. However, isLoopEntryGuardedByCond doesn't like
extra ptrtoint casts, so the arguments to isLoopEntryGuardedByCond need
to be computed without those casts.
Somehow, the values got mixed up with the recent howManyLessThans
improvements; fix the confused values, and add a better comment to
explain what's happening.
Differential Revision: https://reviews.llvm.org/D109465
Users of delinearization assume that the the offset into the array element is zero. In most cases it will indeed be zero, but if it is not, the delinearization has to fail since it violates that assumption without the API even allowing to signal to the caller that the by offset is non-zero.
This bug caused Polly to miscompile blender (526.blender_r from SPEC CPU 2017) in -polly-process-unprofitable mode. The SCEV expression incorrectly delinearized has been reduced in the test case byte_offset.ll. The dropped offset into the array element of size 4 (a float) is ((sext i32 %mul7.i4534 to i64) + {(sext i32 %i1 to i64),+,((sext i32 (1 + ((1 + %shl.i.i) * (1 + %shl.i.i)) + %shl.i.i) to i64) * (sext i32 %i1 to i64))}<%for.body703>). This significant component was just dropped, and the wrong pointer was computed when regenerating code from the remaining delinearized subscripts. This occurred during blender's subsurface scattering implementation. As a result, blender's rendering diverged from the reference image.
Patch D108885 would also fix the API.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D109133
The implementation is mostly copied from MemDepAnalysis. We want to look
at all loads and stores to the same pointer operand. Bitcasts and zero
GEPs of a pointer are considered the same pointer value. We choose the
most dominating instruction.
Since updating MemorySSA with invariant.group is non-trivial, for now
handling of invariant.group is not cached in any way, so it's part of
the walker. The number of loads/stores with invariant.group is small for
now anyway. We can revisit if this actually noticeably affects compile
times.
To avoid invariant.group affecting optimized uses, we need to have
optimizeUsesInBlock() not use invariant.group in any way.
Co-authored-by: Piotr Padlewski <prazek@google.com>
Reviewed By: asbirlea, nikic, Prazek
Differential Revision: https://reviews.llvm.org/D109134
The basic problem being solved is that we largely give up when encountering a trip count involving an IV which is not an addrec. We will fall back to the brute force constant eval, but that doesn't have the information about the fact that we can't cycle back through the same set of values.
There's a high level design question of whether this is the right place to handle this, and if not, where that place is. The major alternative here would be to return a conservative upper bound, and then rely on two invocations of indvars to add the facts to the narrow IV, and then reconstruct SCEV. (I have not implemented the alternative and am not 100% sure this would work out.) That's arguably more in line with existing code, but I find this substantially easier to reason about. During review, no one expressed a strong opinion, so we went with this one.
Differential Revision: D108651
We previously didn't have any tests to defend the cost model
for gathers and scatters using SVE without a vscale_range
attribute. I've added tests to existing files:
Analysis/CostModel/AArch64/sve-gather.ll
Analysis/CostModel/AArch64/sve-scatter.ll
Differential Revision: https://reviews.llvm.org/D109055
Due to a typo, this replaced %x with umax(C1, umin(C2, %x + C3))
rather than umax(C1, umin(C2, %x)). This didn't make a difference
for the existing tests, because the result is only used for range
calculation, and %x will usually have an unknown starting range,
and the additional offset keeps it unknown. However, if %x already
has a known range, we may compute a result range that is too
small.
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
Only tests in llvm/test/Analysis.
-analyze is legacy PM-specific.
This only touches files with `-passes`.
I looked through everything and made sure that everything had a new PM equivalent.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D109040
This is a followup to D104662 to generate slightly nicer code for
pointer overflow checks. Bypass expandAddToGEP and instead
explicitly generate i8 GEPs. This saves some bitcasts and negates
the value in a more obvious way. In particular, this prevents SCEV
from looking through the umul.with.overflow, same as in the integer
case.
The wrapping-pointer-ni.ll test deserves a comment: Previously,
this generated a typed GEP which used the umulo argument rather
than the multiplication result. This results in more compact IR in
that case, but effectively does the multiplication twice, the
second one is just hidden in the GEP. Reusing the umulo result
seems pretty reasonable to me.
Differential Revision: https://reviews.llvm.org/D109093
Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)
TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.
While the end result of discussion may lead back to the current design,
it may also not lead to the current design.
Therefore i take it upon myself
to revert the tree back to last known good state.
This reverts commit 4c4093e6e3.
This reverts commit 0a2b1ba33a.
This reverts commit d9873711cb.
This reverts commit 791006fb8c.
This reverts commit c22b64ef66.
This reverts commit 72ebcd3198.
This reverts commit 5fa6039a5f.
This reverts commit 9efda541bf.
This reverts commit 94d3ff09cf.
Several FP instructions (fadd, fsub, etc.) were incorrectly assigned
a higher cost for SVE because they have custom lowering, however we
know they are legal. This patch explicitly assigns a cost of 2 to
these opcodes.
Tests added here:
Analysis/CostModel/AArch64/arith-fp-sve.ll
Differential Revision: https://reviews.llvm.org/D108993
This extends D108921 into a generic rule applied to constructing ExitLimits along all paths. The remaining paths (primarily howFarToZero) don't have the same reasoning about UB sensitivity as the howManyLessThan ones did. Instead, the remain cause for max counts being more precise than exact counts is that we apply context sensitive loop guards on the max path, and not on the exact path. That choice is mildly suspect, but out of scope of this patch.
The MVETailPredication.cpp change deserves a bit of explanation. We were previously figuring out that two SCEVs happened to be equal because the happened to be identical. When we optimized one with context sensitive information, but not the other, we lost the ability to prove them equal. So, cover this case by subtracting and then applying loop guards again. Without this, we see changes in test/CodeGen/Thumb2/mve-blockplacement.ll
Differential Revision: https://reviews.llvm.org/D109015
This patch is specifically the howManyLessThan case. There will be a couple of followon patches for other codepaths.
The subtle bit is explaining why the two codepaths have a difference while both are correct. The test case with modifications is a good example, so let's discuss in terms of it.
* The previous exact bounds for this example of (-126 + (126 smax %n))<nsw> can evaluate to either 0 or 1. Both are "correct" results, but only one of them results in a well defined loop. If %n were 127 (the only possible value producing a trip count of 1), then the loop must execute undefined behavior. As a result, we can ignore the TC computed when %n is 127. All other values produce 0.
* The max taken count computation uses the limit (i.e. the maximum value END can be without resulting in UB) to restrict the bound computation. As a result, it returns 0 which is also correct.
WARNING: The logic above only holds for a single exit loop. The current logic for max trip count would be incorrect for multiple exit loops, except that we never call computeMaxBECountForLT except when we can prove either a) no overflow occurs in this IV before exit, or b) this is the sole exit.
An alternate approach here would be to add the limit logic to the symbolic path. I haven't played with this extensively, but I'm hesitant because a) the term is optional and b) I'm not sure it'll reliably simplify away. As such, the resulting code quality from expansion might actually get worse.
This was noticed while trying to figure out why D108848 wasn't NFC, but is otherwise standalone.
Differential Revision: https://reviews.llvm.org/D108921
And add a test case to illustrate that we do in fact produce the right result for the multiple exit case. I have gotten myself confused at least three times when reading this code, so clarify to prevent future confusion.
Tell the cost model to use the scalable calculation for non-neon fixed vector.
This results in a cheaper cost for fixed-length SVE masked gathers/scatters
allowing the vectorizor to emit them more frequently.
This was previously committed in 914836b, and reverted due to confusion on the status of the review.
Differential Revision: https://reviews.llvm.org/D108601
If we no an addrec doesn't self-wrap, the increment is strictly positive, and the start value is the smallest representable value, then we know that the corresponding wrap type can not occur.
Differential Revision: https://reviews.llvm.org/D108601
A couple of passes that are parameterized in new-PM used different
pass names (in cmd line interface) while using the same pass class
name. This patch updates the PassRegistry to model pass parameters
more properly using PASS_WITH_PARAMS.
Reason for the change is to ensure that we have a 1-1 mapping
between class name and pass name (when disregarding the params).
With a 1-1 mapping it is more obvious which pass name to use in
options such as -debug-only, -print-after etc.
The opt -passes syntax is changed for the following passes:
early-cse-memssa => early-cse<memssa>
post-inline-ee-instrument => ee-instrument<post-inline>
loop-extract-single => loop-extract<single>
lower-matrix-intrinsics-minimal => lower-matrix-intrinsics<minimal>
This patch is not updating pass names in docs/Passes.rst. Not quite
sure what the status is for that document (e.g. when it comes to
listing pass paramters). It is only loop-extract-single that is
mentioned in Passes.rst today, out of the passes mentioned above.
Differential Revision: https://reviews.llvm.org/D108362
According to the langref, it is valid to have multiple consecutive
lifetime start or end intrinsics on the same object.
For llvm.lifetime.start:
"If ptr [...] is a stack object that is already alive, it simply
fills all bytes of the object with poison."
For llvm.lifetime.end:
"Calling llvm.lifetime.end on an already dead alloca is no-op."
However, we currently fail an assertion in such cases. I've observed
the assertion failure when the loop vectorization pass duplicates
the intrinsic.
We can conservatively handle these intrinsics by ignoring all but
the first one, which can be implemented by removing the assertions.
Differential Revision: https://reviews.llvm.org/D108337
MSSA-based LICM has been enabled by default for a few years now.
This drops the old AST-based implementation. Using loop(licm) will
result in a fatal error, the use of loop-mssa(licm) is required
(or just licm, which defaults to loop-mssa).
Note that the core canSinkOrHoistInst() logic has to retain AST
support for now, because it is shared with LoopSink.
Differential Revision: https://reviews.llvm.org/D108244
For tight loops like this:
float r = 0;
for (int i = 0; i < n; i++) {
r += a[i];
}
it's better not to vectorise at -O3 using fixed-width ordered reductions
on AArch64 targets. Although the resulting number of instructions in the
generated code ends up being comparable to not vectorising at all, there
may be additional costs on some CPUs, for example perhaps the scheduling
is worse. It makes sense to deter vectorisation in tight loops.
Differential Revision: https://reviews.llvm.org/D108292
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
This option has been enabled by default for quite a while now.
The practical impact of removing the option is that MSSA use
cannot be disabled in default pipelines (both LPM and NPM) and
in manual LPM invocations. NPM can still choose to enable/disable
MSSA using loop vs loop-mssa.
The next step will be to require MSSA for LICM and drop the
AST-based implementation entirely.
Differential Revision: https://reviews.llvm.org/D108075
This is enabled by default. Drop explicit uses in preparation for
removing the option.
Also drop RUN lines that are now the same (typically modulo a
-verify-memoryssa option).
This reverts the revert 28c04794df.
The failing MLIR test that caused the revert should be fixed in this
version.
Also includes a PPC test fix previously in 1f87c7c478.
a1ef81de35 adjusted the definition of the intrinsic, but did not
update a PowerPC test. Fix the test by updating the call & declaration
of @llvm.matrix.column.major.load.
D105263 introduced this new test. It fails when asserts are disabled,
due to using a debug option on opt.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D107805
The MemorySSA-based implementation has been enabled for a few months
(since D94376). This patch drops the old MDA-based implementation
entirely.
I've kept this to only the basic cleanup of dropping various
conditions -- the code could be further cleaned up now that there
is only one implementation.
Differential Revision: https://reviews.llvm.org/D102113
fix an assertion due to mismatch type for Numerator and CacheLineSize in loop cache analysis pass.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D107618
This takes the existing SVE costing for the various min/max reduction
intrinsics and expands it to NEON, where I believe it applies equally
well.
In the process it changes the lowering to use min/max cost, as opposed
to summing up the cost of ICmp+Select.
Differential Revision: https://reviews.llvm.org/D106239
Function exploreDirections() in DependenceAnalysis implements a recursive
algorithm for refining direction vectors. This algorithm has worst-case
complexity of O(3^(n+1)) where n is the number of common loop levels.
In this patch I'm adding a threshold to control the amount of time we
spend in doing MIV tests (which most of the time end up resulting in over
pessimistic direction vectors anyway).
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D107159