This fixes the assertion failure reported at
https://reviews.llvm.org/D114889#3198921 with a straightforward
check, until the cleaner fix in D115924 can be reapplied.
This reverts commit 9fd4f80e33.
This breaks SingleSource/Regression/C/gcc-c-torture/execute/pr19687.c
in test-suite. Either the test is incorrect, or clang is generating
incorrect union initialization code. I've submitted
https://reviews.llvm.org/D115994 to fix the test, assuming my
interpretation is correct. Reverting this in the meantime as it
may take some time to resolve.
There are a number of places that specially handle loads from a
uniform value where all the bits are the same (zero, one, undef,
poison), because we a) don't care about the load offset in that
case and b) it bypasses casts that might not be legal generally
but do work with uniform values.
We had multiple implementations of this, with a different set of
supported values each time, as well as incomplete type checks in
some cases. In particular, this fixes the assertion reported in
https://reviews.llvm.org/D114889#3198921, as well as a similar
assertion that could be triggered via constant folding.
Differential Revision: https://reviews.llvm.org/D115924
This fixes the assertion failure reported in https://reviews.llvm.org/D114889#3166417,
by making RecursivelyDeleteTriviallyDeadInstructionsPermissive()
more permissive. As the function accepts a WeakTrackingVH, even if
originally only Instructions were inserted, we may end up with
different Value types after a RAUW operation. As such, we should
not assume that the vector only contains instructions.
Notably this matches the behavior of the
RecursivelyDeleteTriviallyDeadInstructions() function variant which
accepts a single value rather than vector.
This bases the CleanupConstantGlobalUsers() implementation around
the ConstantFoldLoadFromConst() API. The general approach is that
we discover all users while looking through casts, and then
constant fold loads and drop stores and memintrinsics.
This avoids special cases and limitations in the previous
implementation, which is also incompatible with opaque pointers.
The result is a bit more powerful than before, because we now use
more general load folding logic which can for example look through
pointer bitcasts between different sizes. This is where the test
changes come from, as we now fold more loads and can thus remove
more globals.
Differential Revision: https://reviews.llvm.org/D114889
The legacy PM is deprecated, so update a bunch of lit tests running
opt to use the new PM syntax when specifying the pipeline.
In this patch focus has been put on test cases for ConstantMerge,
ConstraintElimination, CorrelatedValuePropagation, GlobalDCE,
GlobalOpt, SCCP, TailCallElim and PredicateInfo.
Differential Revision: https://reviews.llvm.org/D114516
Right now when we see -O# we add the corresponding 'default<O#>' into
the list of passes to run when translating legacy -pass-name. This has
the side effect of not using the default AA pipeline.
Instead, treat -O# as -passes='default<O#>', but don't allow any other
-passes or -pass-name. I think we can keep `opt -O#` as shorthand for
`opt -passes='default<O#>` but disallow anything more than just -O#.
Tests need to be updated to not use `opt -O# -pass-name`.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112036
This is a fix for the issue reported at
https://reviews.llvm.org/D110043#3019942:
The ElementSize is a uint64_t and as such may be larger than the
index space, or be negative in the index space. This is UB, but
shouldn't cause assertion failures.
We address this by detecting whether the size is too large and
use a zero index in that case (which is always conservatively
correct).
Differential Revision: https://reviews.llvm.org/D110437
Do not call `TryToShrinkGlobalToBoolean` for address spaces
that don't allow initializers. It inserts an initializer value
while shrinking to bool. Used the target hook introduced with
D109337 to skip this call for the restricted address spaces.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109823
This reapplies commit 7dbba3376f, or, put
differently, this reverts commit d9a8d20827.
The test now requires the amdgpu and nvptx backend explicitly as it
won't work without properly.
Not all address spaces support initializers for globals and we can
therefore not set them without checking if they are allowed. This
patch adds a hook into TTI to check if an AS allows non-undef
initializers. We disable it for all but address space 0 by default,
NVPTX and AMDGPU targets allow all but address space 3.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109337
We try to forward a stored-once-constant-value from one global access
to another, but that's not safe if the constant value is an expression
that can trap.
The tests are reduced from the miscompile examples in:
https://llvm.org/PR47578
Differential Revision: https://reviews.llvm.org/D108771
In the provided test case, we were trying to set the global's
initializer to `i32* null` when the global's value type was `@0`.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108232
Currently, in OptimizeGlobalAddressOfMalloc, the transformation for global loads assumes that they have the same Type. With the support of ConstantExpr (https://reviews.llvm.org/D106589), this may not be true any more (as seen in the test case), and we miss the code to handle this, This is to fix that.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107397
I'm working on extending the OptimizeGlobalAddressOfMalloc to handle some more general cases. This is to add support of the ConstantExpr use of the global variables. The function allUsesOfLoadedValueWillTrapIfNull is now iterative with the added CE use of GV. Also, the recursive function valueIsOnlyUsedLocallyOrStoredToOneGlobal is changed to iterative using a worklist with the GEP case added.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D106589
The bug was that evaluateBitcastFromPtr attempts a narrowing to a struct's 0th
element of a store that covers other elements. While this is okay on the load
side, applying it to stores causes us to miss the writes to the additionally
covered elements.
rdar://79503568
Differential revision: https://reviews.llvm.org/D105838
TypeFinder did not find types under DIArgList. This resulted in a case
of invalid IR after GlobalOpt removed a global that was the only
non-DIArgList use of a struct type.
error: use of undefined type named 'struct.S'
call void @llvm.dbg.value(
metadata !DIArgList([1 x %struct.S]* undef, i64 %idxprom),
metadata !24, metadata !DIExpression([...]))
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D103306
GlobalOpt can slice structs/arrays and change GEPs in the process,
but it was not updating alignments for load/store users. This
eventually causes the crashing seen in:
https://llvm.org/PR49661https://llvm.org/PR50253
On x86, this required SLP+codegen to create an aligned vector
store on an invalid address. The bugs would be easier to
demonstrate on a target with stricter alignment requirements.
I'm not sure if this is a complete solution. The alignment
updating code is adapted from InstCombine, so I assume that
part is tested and good.
Differential Revision: https://reviews.llvm.org/D102552
I'm also adding an explicit data layout, so we can
confirm that alignment requirements/prefs are met.
I tried to use complete/scripted CHECK lines here,
but that fails with 1 of the globals, and not sure why.
GlobalOpt implements a heap SROA (SROA for an malloc allocatated struct or array
of structs) which is largely undertested (heap-sra-[1234].ll are basically the
same test with very little difference) and does not trigger at all when
bootstrapping clang (it only supports the case of one single store).
The heap SROA implementation causes PR50027 (GEP is not properly handled; crash or miscompile).
Just drop the implementation. I have deleted some obviously duplicated tests
but kept `heap-sra-[12]{,-no-nullopt}.ll`.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102257
Both the alias and aliasee linkage are important.
PR27866 provides some background.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99629
Trying to evaluate a GEP would assert with
"Ty == cast<PointerType>(C->getType()->getScalarType())->getElementType()"
because the type of the pointer we would evaluate the GEP argument to
would be a different type than the GEP was expecting. We should treat
pointer stripping as a bitcast.
The test adds a redundant GEP that would crash due to type mismatch.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100970
Turning on -fstrict-vtable-pointers in Chrome caused an extra global
initializer. Turns out that a llvm.strip.invariant.group intrinsic was
causing GlobalOpt to fail to step through some simple code.
We can treat *.invariant.group uses as simply their operand.
Value::stripPointerCastsForAliasAnalysis() does exactly this. This
should be safe because the Evaluator does not skip memory accesses due
to invariants or alias analysis.
However, we don't want to leak that we've stripped arbitrary pointer
casts to users of Evaluator, so we bail out if we evaluate a function to
any constant, since we may have looked through *.invariant.group calls
and aliasing pointers cannot be arbitrarily substituted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D98843
This patch enhances hasAddressTaken() to ignore bitcasts as a
callee in callbase instruction. Such bitcast usage doesn't really take
the address in a useful meaningful way.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D98884
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
When marking a global variable constant, and simplifying users using
CleanupConstantGlobalUsers(), the pass could incorrectly return false if
there were still some uses left, and no further optimizations was done.
This was caught using the check introduced by D80916.
This fixes PR46749.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D85837
When removing a non-constant store to a global in
CleanupPointerRootUsers(), the GlobalOpt pass could incorrectly return
false.
This was caught using the check introduced by D80916.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86149
When possible (e.g. internal linkage), strip preallocated attribute off
parameters/arguments.
This requires removing the "preallocated" operand bundle from the call
site, replacing @llvm.call.preallocated.arg() with an alloca and a
bitcast to i8*, and removing the @llvm.call.preallocated.setup(). Since
@llvm.call.preallocated.arg() can be called multiple times with the same
arg index, we create an alloca per arg index.
We add a @llvm.stacksave() where the @llvm.call.preallocated.setup() was
and a @llvm.stackrestore() after the preallocated call to prevent the
stack from blowing up. This is valid because the argument would normally
not exist on the stack after the call before the transformation.
This does not currently handle all possible preallocated calls. We will
need to figure out where to put @llvm.stackrestore() in the cases where
there is no obvious place to put it, for example conditional
preallocated calls, invokes.
This sort of transformation may need to be moved to somewhere more
accessible to accomodate similar transformations (like inlining) in the
future.
Reviewers: efriedma, hans
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80951