preinliner has been tuned on large server workloads and it's not ready to be turned on by default. this change also updates the thresholds based on tuning.
Differential Revision: https://reviews.llvm.org/D115770
Before we have an issue with artificial LBR whose source is a return, recalling that "an internal code(A) can return to external address, then from the external address call a new internal code(B), making an artificial branch that looks like a return from A to B can confuse the unwinder". We just ignore the LBRs after this artificial LBR which can miss some samples. This change aims at fixing this by correctly unwinding them instead of ignoring them.
List some typical scenarios covered by this change.
1) multiple sequential call back happen in external address, e.g.
```
[ext, call, foo] [foo, return, ext] [ext, call, bar]
```
Unwinder should avoid having foo return from bar. Wrong call stack is like [foo, bar]
2) the call stack before and after external call should be correctly unwinded.
```
{call stack1} {call stack2}
[foo, call, ext] [ext, call, bar] [bar, return, ext] [ext, return, foo ]
```
call stack 1 should be the same to call stack2. Both shouldn't be truncated
3) call stack should be truncated after call into external code since we can't do inlining with external code.
```
[foo, call, ext] [ext, call, bar] [bar, call, baz] [baz, return, bar ] [bar, return, ext]
```
the call stack of code in baz should not include foo.
### Implementation:
We leverage artificial frame to fix#2 and #3: when we got a return artificial LBR, push an extra artificial frame to the stack. when we pop frame, check if the parent is an artificial frame to pop(fix#2). Therefore, call/ return artificial LBR is just the same as regular LBR which can keep the call stack.
While recording context on the trie, artificial frame is used as a tag indicating that we should truncate the call stack(fix#3).
To differentiate #1 and #2, we leverage `getCallAddrFromFrameAddr`. Normally the target of the return should be the next inst of a call inst and `getCallAddrFromFrameAddr` will return the address of call inst. Otherwise, getCallAddrFromFrameAddr will return to 0 which is the case of #1.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D115550
We can have the sampling just hit into the external addresses, in that case, both the top stack frame and the latest LBR target are external addresses. For example:
```
ffffffff
0x4006c8/0xffffffff/P/-/-/0 0x40069b/0x400670/M/-/-/0
ffffffff
40067e
0xffffffff/0xffffffff/P/-/-/0 0x4006c8/0xffffffff/P/-/-/0 0x40069b/0x400670/M/-/-/0
```
Before we will ignore the entire samples. However, we found there exists some internal LBRs in the remaining part of sample, the range between them is still a valid range, we will lose some valid LBRs. Those LBRs will be unwinded based on a empty(context-less) call stack.
This change tries to fix it, instead of ignoring the entire sample, we only ignore the leading external addresses.
Note that the first outgoing LBR is useful since there is a valid range between it's source and next LBR's target.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D115538
CSSPGO currently employs a flat profile format for context-sensitive profiles. Such a flat profile allows for precisely manipulating contexts that is either inlined or not inlined. This is a benefit over the nested profile format used by non-CS AutoFDO. A downside of this is the longer build time due to parsing the indexing the full CS contexts.
For a CS flat profile, though only the context profiles relevant to a module are loaded when that module is compiled, the cost to figure out what profiles are relevant is noticeably high when there're many contexts, since the sample reader will need to scan all context strings anyway. On the contrary, a nested function profile has its related inline subcontexts isolated from other unrelated contexts. Therefore when compiling a set of functions, unrelated contexts will never need to be scanned.
In this change we are exploring using nested profile format for CSSPGO. This is expected to work based on an assumption that with a preinliner-computed profile all contexts are precomputed and expected to be inlined by the compiler. Contexts not expected to be inlined will be cut off and returned to corresponding base profiles (for top-level outlined functions). This naturally forms a nested profile where all nested contexts are expected to be inlined. The compiler will less likely optimize on derived contexts that are not precomputed.
A CS-nested profile will look exactly the same with regular nested profile except that each nested profile can come with an attributes. With pseudo probes, a nested profile shown as below can also have a CFG checksum.
```
main:1968679:12
2: 24
3: 28 _Z5funcAi:18
3.1: 28 _Z5funcBi:30
3: _Z5funcAi:1467398
0: 10
1: 10 _Z8funcLeafi:11
3: 24
1: _Z8funcLeafi:1467299
0: 6
1: 6
3: 287884
4: 287864 _Z3fibi:315608
15: 23
!CFGChecksum: 138828622701
!Attributes: 2
!CFGChecksum: 281479271677951
!Attributes: 2
```
Specific work included in this change:
- A recursive profile converter to convert CS flat profile to nested profile.
- Extend function checksum and attribute metadata to be stored in nested way for text profile and extbinary profile.
- Unifiy sample loader inliner path for CS and preinlined nested profile.
- Changes in the sample loader to support probe-based nested profile.
I've seen promising results regarding build time. A nested profile can result in a 20% shorter build time than a CS flat profile while keep an on-par performance. This is with -duplicate-contexts-into-base=1.
Test Plan:
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D115205
Since total sample and body sample are used to compute hotness threshold in compiler, we found in some services changing the total samples computation will cause noticeable regression. Hence, here we will revert the changes and just keep all total samples number identical to the old tool.
Three changes in this diff:
1. Revert previous diff(https://reviews.llvm.org/D112672: [llvm-profgen] Update total samples by accumulating all its body samples) and put it under a switch.
2. Keep the negative line number. Although compiler doesn't consume the count but it will be used to compute hot threshold.
3. Change to accumulate total samples per byte instead of per instruction.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D115013
This change allows to trim the profile if it's considered to be cold for baseline AutoFDO. We reuse the cold threshold from `ProfileSummaryBuilder::getColdCountThreshold(..)` which can be set by percent(--profile-summary-cutoff-cold) or by value(--profile-summary-cold-count).
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113785
Due to the debug info merging, there may have some contexts with zero probe id, we should truncate the context to avoid misleading pre-inliner.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D114284
In order to support generating profile with FS discriminator, three kind of changes are done in llvm-profgen:
1) Dissassemble .rodata section to check if FS discriminator var ('"__llvm_fs_discriminator__"') exists and set the corresponding flag in the binary.
2) Change the discriminator decoding in `getBaseDiscriminator` and `getDuplicationFactor`.
3) set true for `FunctionSamples::ProfileIsFS` to enable FS functionality in ProfileData.
Reviewed By: xur, hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113296
For nodes that are in a cycle of a profiled call graph, the current order the underlying scc_iter computes purely depends on how those nodes are reached from outside the SCC and inside the SCC, based on the Tarjan algorithm. This does not honor profile edge hotness, thus does not gurantee hot callsites to be inlined prior to cold callsites. To mitigate that, I'm adding an extra sorter on top of scc_iter to sort scc functions in the order of callsite hotness, instead of changing the internal of scc_iter.
Sorting on callsite hotness can be optimally based on detecting cycles on a directed call graph, i.e, to remove the coldest edge until a cycle is broken. However, detecting cycles isn't cheap. I'm using an MST-based approach which is faster and appear to deliver some performance wins.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D114204
AutoFDO performance is sensitive to profile density, i.e., the amount of samples in the profile relative to the program size, because profiles with insufficient samples could be inaccurate due to statistical noise and thus hurt AutoFDO performance. A previous investigation showed that AutoFDO performed better on MySQL with increased amount of samples. Therefore, we implement a profile-density computation feature to give hints about profile density to users and the compiler.
We define the density of a profile Prof as follows:
- For each function A in the profile, density(A) = total_samples(A) / sizeof(A).
- density(Prof) = min(density(A)) for all functions A that are warm (defined below).
A function is considered warm if its total-samples is within top N percent of the profile. For implementation, we reuse the `ProfileSummaryBuilder::getHotCountThreshold(..)` as threshold which can be set by percent(`--profile-summary-cutoff-hot`) or by value(`--profile-summary-hot-count`).
We also introduce `--hot-function-density-threshold` to set hot function density threshold and will give suggestion if profile density is below it which implies we should increase samples.
This also applies for CS profile with all profiles merged into base.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113781
Adding `-use-loadable-segment-as-base` to allow use of first loadable segment for calculating offset. By default first executable segment is used for calculating offset. The switch helps compatibility with unsymbolized profile generated from older tools.
Differential Revision: https://reviews.llvm.org/D113727
Previously we set `isFuncEntry` flag to true when the funcName from DWARF is equal to the name in symbol table and we use this flag to ignore reporting callsite sample that's from an intra func branch. However, in HHVM, it appears that the symbol table name is inconsistent with the dwarf info func name, it's likely due to `OptimizeGlobalAliases`.
This change is a workaround in llvm-profgen side to mark the only one range as the function entry and add warnings for the remaining inconsistence.
This also fixed a missing `getCanonicalFnName` for symbol name which caused the mismatching as well.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113492
Previously we assume there're some non-executing sections at the bottom of the text section so that we won't hit the array's bound. But on BOLTed binary, it turned out .bolt section is at the bottom of text section which can be profiled, then it crash llvm-profgen. This change try to fix it.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113238
Two things in this diff:
1) Warn on the invalid range, currently three types of checking, see the detailed message in the code.
2) In some situation, llvm-profgen gives lots of warnings on the truncated stacks which is noisy. This change provides a switch to `--show-detailed-warning` to skip the warnings. Alternatively, we use a summary for those warning and show the percentage of cases with those issues.
Example of warning summary.
```
warning: 0.05%(1120/2428958) cases with issue: Profile context truncated due to missing probe for call instruction.
warning: 0.00%(2/178637) cases with issue: Range does not belong to any functions, likely from external function.
```
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D111902
Allow filling zero count for all the function ranges even there is no samples hitting that function. Add a switch for this.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D112858
Like probe-based profile, the total samples is the sum of all its body samples. This patch fix it by a post-processing update for the line-number based profile. Tested it on our internal services, results showed no performance change.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D112672
This patch fixes:
llvm/tools/llvm-profgen/ProfiledBinary.cpp:357:12: error: variable
'EndOffset' set but not used [-Werror,-Wunused-but-set-variable]
The last use of the variable was removed on Oct 26 in commit
40ca411251.
Previous implementation of populating profile symbol list is wrong, it only included the profiled symbols. Actually it should use all symbols, here this switches to use the symbols from debug info. Also turned the flag off by default.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D111824
It happened a bug that some callsite name in the profile is not a real function, it turned out that there're some non-function symbol from the ELF text section, e.g. the global accessible branch label and also recalled that we can have one function being split into multiple ranges. We shouldn't count samples for those are not the entry of the real function.
So this change tried to fix this issue by switching to use the name or ranges from DWARF-based debug info, the range of which assure it's the real function start. For the split functions, we assume that the real entry function's DWARF name should always match the symbol table name.
The switching is also consistent with the body samples' symbol which is from DWARF.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D112282
Adding support to the CS preinliner to trim cold base profiles. This makes trimming consistent with the inline decision made by the preinliner. Also disable the existing profile merger when preinliner is on unless explicitly specified.
Reviewed By: wenlei, wlei
Differential Revision: https://reviews.llvm.org/D112489
This change allows the unsymbolized profile as input. The unsymbolized profile is created by `llvm-profgen` with `--skip-symbolization` and it's after the sample aggregation but before symbolization , so it has much small file size. It can be used for sample merging and trimming, also is useful for debugging or adding test cases. A switch `--unsymbolized-profile=file-patch` is added for this.
Format of unsymbolized profile:
```
[context stack1] # If it's a CS profile
number of entries in RangeCounter
from_1-to_1:count_1
from_2-to_2:count_2
......
from_n-to_n:count_n
number of entries in BranchCounter
src_1->dst_1:count_1
src_2->dst_2:count_2
......
src_n->dst_n:count_n
[context stack2]
......
```
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D111750
We incorrectly use duplication factor for total samples even though we already accumulate samples instead of taking MAX. It causes profile to have bloated total samples for functions with loop unrolled or vectorized. The change fix the issue for total sample, head sample and call target samples.
Differential Revision: https://reviews.llvm.org/D112042
Add `-use-dwarf-correlation` switch to allow llvm-profgen to generate AutoFDO profile for binaries built with CSSPGO (pseudo-probe).
Differential Revision: https://reviews.llvm.org/D111776
The first LBR entry can be an external branch, we should ignore the whole trace.
```
7f7448e889e4 0x7f7448e889e4/0x7f7448e88826/P/-/-/1 0x7f7448e8899f/0x7f7448e889d8/P/-/-/4 ...
```
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D111749
With `ignore-stack-samples`, We can ignore the call stack before the samples aggregation which could reduce some redundant computations.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D111577
When parsing mmap to retrieve PID, deduplicate them before passing PID list to perf script. Perf script would error out when there's duplicated PID in the input, however raw perf data may main duplicated PID for large binary where more than one mmap is needed to load executable segment.
Differential Revision: https://reviews.llvm.org/D111384
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
For some transformations like hot-cold split or coro split, it can outline its part of function ranges. Since sample loader is the early stage of backend and no split happens at that time, compiler can't recognize those function, so in llvm-profgen we should attribute the sample to the original function. This is already done for the body range samples since we use the symbols from dwarf which is created before the split.
But for branch samples, the call from master function to its outlined function is actually not a call to the original function, we shouldn't add head/callsie samples for it. So instead of dwarf symbol, we use the symbols from symbol table and ignore those functions with special suffixes(like `.cold` ,`.resume`) for accumulating the callsite/head samples.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110864
This change adds duplication factor multiplier while accumulating body samples for line-number based profile. The body sample count will be `duplication-factor * count`. Base discriminator and duplication factor is decoded from the raw discriminator, this requires some refactor works.
Differential Revision: https://reviews.llvm.org/D109934
We used the segment alignment in elf header to assume the loader alignment. However this is incorrect because loader alignment is always the same as page size. If segment needs to be aligned at load time, linker will set aligned address as virtual address in elf header.
Differential Revision: https://reviews.llvm.org/D110795
This change enables llvm-profgen to take raw perf data as alternative input format. Sometimes we need to retrieve evenets for processes with matching binary. Using perf data as input allows us to retrieve process Ids from mmap events for matching binary, then filter by process id during perf script generation.
Differential Revision: https://reviews.llvm.org/D110793
This change contains diagnostics improvments, refactoring and preparation for consuming perf data directly.
Diagnostics:
- We now have more detailed diagnostics when no mmap is found.
- We also print warning for abnormal transition to external code.
Refactoring:
- Simplify input perf trace processing to only allow a single input file. This is because 1) using multiple input perf trace (perf script) is error prone because we may miss key mmap events. 2) the functionality is not really being used anyways.
- Make more functions private for Readers, move non-trivial definitions out of header. Cleanup some inconsistency.
- Prepare for consuming perf data as input directly.
Differential Revision: https://reviews.llvm.org/D110729
Similar to https://reviews.llvm.org/D110465, we can compute function size on-demand for the functions that's hit by samples.
Here we leverage the raw range samples' address to compute a set of sample hit function. Then `BinarySizeContextTracker` just works on those function range for the size.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D110466
Previously we do symbolization for all the functions and actually we only need the symbols that's hit by the samples.
This can significantly speed up the time for large size binary.
Optimization for per-inliner will come along with next patch.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110465
In order to be consistent with compiler that interprets zero count as unexecuted(cold), this change reports zero-value count for unexecuted part of function code. For the implementation, it leverages the range counter, initializes all the executed function range with the zero-value. After all ranges are merged and converted into disjoint ranges, the remaining zero count will indicates the unexecuted(cold) part of the function.
This change also extends the current `findDisjointRanges` method which now can support adding zero-value range.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D109713
This patch introduces non-CS AutoFDO profile generation into LLVM. The profile is supposed to be well consumed by compiler using `-fprofile-sample-use=[profile]`.
After range and branch counters are extracted from the LBR sample, here we go through each addresses for symbolization, create FunctionSamples and populate its sub fields like TotalSamples, BodySamples and HeadSamples etc. For inlined code, as we need to map back to original code, so we always add body samples to the leaf frame's function sample.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D109551
Similar to https://reviews.llvm.org/D109637, there is a whole invalid line of message in perfscript.
```
warning: Invalid address in LBR record at line 14118674: Processed 14138923 events and lost 1 chunks!
warning: Invalid address in LBR record at line 14118676: Check IO/CPU overload!
```
This only happened for LBR only perfscript, hybridperfscript have a check of " 0x" to make sure it's the LBR perf line.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110424
It seems we missed one spot to persist `SampleContextFrameVector` into the global table (CSProfileGenerator::populateFunctionBoundarySamples:340) which causes a crash.
This change tried to fix it in a centralized way i. e. where we generate the `FunctionSamples`.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110275
It happened that the LBR entry target can be the first address of text section which causes an out-of-range crash. So here add a boundary check.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110271