`UdtRecordCompleter` shouldn't complete static members' types. static members' types are going to be completed when the types are called in `SymbolFile::CompleteType`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D121030
D115300 added Rust as a new PDB language type.
This change allows LLDB to recognize the new language type.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D119044
Major user-facing changes:
Many headers in llvm/DebugInfo/CodeView no longer include
llvm/Support/BinaryStreamReader.h or llvm/Support/BinaryStreamWriter.h,
those headers may need to be included manually.
Several headers in llvm/DebugInfo/CodeView no longer include
llvm/DebugInfo/CodeView/EnumTables.h or llvm/DebugInfo/CodeView/CodeView.h,
those headers may need to be included manually.
Some statistics:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/DebugInfo/CodeView/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
after: 2794466
before: 2832765
Discourse thread on the topic: https://discourse.llvm.org/t/include-what-you-use-include-cleanup/
Differential Revision: https://reviews.llvm.org/D119092
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
This adds inline function support to NativePDB by parsing S_INLINESITE records
to retrieve inlinee line info and add them into line table at `ParseLineTable`.
Differential Revision: https://reviews.llvm.org/D116845
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
I don't see a reason why not to. If we allows lookup functions by full names,
I can change the test case in D113930 to use `lldb-test symbols --find=function --name=full::name --function-flags=full ...`,
though the duplicate method decl prolem is still there for `lldb-test symbols --dump-ast`.
That's a seprate bug, we can fix it later.
Differential Revision: https://reviews.llvm.org/D114467
`image lookup -a ` doesn't work because the compilands list is always empty.
Create CU at given index if doesn't exit.
Differential Revision: https://reviews.llvm.org/D113821
The new key/value pairs that are added to each module's stats are:
"debugInfoByteSize": The size in bytes of debug info for each module.
"debugInfoIndexTime": The time in seconds that it took to index the debug info.
"debugInfoParseTime": The time in seconds that debug info had to be parsed.
At the top level we add up all of the debug info size, parse time and index time with the following keys:
"totalDebugInfoByteSize": The size in bytes of all debug info in all modules.
"totalDebugInfoIndexTime": The time in seconds that it took to index all debug info if it was indexed for all modules.
"totalDebugInfoParseTime": The time in seconds that debug info was parsed for all modules.
Differential Revision: https://reviews.llvm.org/D112501
This adds the `target dump typesystem'`command which dumps the TypeSystem of the
target itself (aka the 'scratch TypeSystem'). This is similar to `target modules
dump ast` which dumps the AST of lldb::Modules associated with a selected
target.
Unlike `target modules dump ast`, the new command is not a subcommand of `target
modules dump` as it's not touching the modules of a target at all. Also unlike
`target modules dump ast` I tried to keep the implementation language-neutral,
so this patch moves our Clang `Dump` to the `TypeSystem` interface so it will
also dump the state of any future/downstream scratch TypeSystems (e.g., Swift).
That's also why the command just refers to a 'typesystem' instead of an 'ast'
(which is only how Clang is necessarily modelling the internal TypeSystem
state).
The main motivation for this patch is that I need to write some tests that check
for duplicates in the ScratchTypeSystemClang of a target. There is currently no
way to check for this at the moment (beside measuring memory consumption of
course). It's probably also useful for debugging LLDB itself.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111936
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`InsertSequence` doesn't take ownership of the pointer so releasing this pointer
is just leaking memory.
Follow up to D100806 that was fixing other leak sanitizer test failures
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D100846
To get LLDB one step closer to fulfil the software redundancy requirements of
modern aircrafts, we apparently decided to have two separately maintained
implementations of `CreateTypedef` in TypeSystemClang. Let's pass on the idea of
an LLDB-powered jetliner and deleted one implementation.
On a more serious note: This function got duplicated a long time ago when the
idea of CompilerType with a backing TypeSystemClang subclass happened
(56939cb310). One implementation was supposed to
be called from CompilerType::CreateTypedef and the other has just always been
around to create typedefs. By accident one of the implementations is only used
by the PDB parser while the CompilerType::CreateTypedef backend is used by the
rest of LLDB.
We also had some patches over the year that only fixed one of the two functions
(D18099 for example only fixed up the CompilerType::CreateTypedef
implementation). D51162 and D86140 both fixed the same missing `addDecl` call
for one of the two implementations.
This patch:
* deletes the `CreateTypedefType` function as its only used by the PDB parser
and the `CreateTypedef` implementation is anyway needed as it's the backend
implementation of CompilerType.
* replaces the calls in the PDB parser by just calling the CompilerType wrapper.
* moves the documentation to the remaining function.
* moves the check for empty typedef names that was only in the deleted
implementation to the other (I don't think this fixes anything as I believe
all callers are already doing the same check).
I'll fix up the usual stuff (not using StringRef, not doing early exit) in a NFC
follow-up.
This patch is not NFC as the PDB parser now calls the function that has the fix
from D18099.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D93382
CreateFunctionDeclaration should just take a StringRef. GetDeclarationName is
(only) used by CreateFunctionDeclaration so that's why now also takes a
StringRef.
When loading a PE/COFF target, the associated PDB file often wasn't
found. The executable module contains a path for the associated PDB
file, but people often debug from a different directory than the one
their build system uses. (This is especially common in post-mortem
and cross platform debugging.)
Suppose the COFF executable being debugged is `~/proj/foo.exe`, but
it was built elsewhere and refers to `D:\remote\build\env\foobar.pdb`,
LLDB wouldn't find it.
With this change, if no file exists at the PDB path, LLDB will look
in the executable directory for a PDB file that matches the name of
the one it expected (e.g., `~/proj/foobar.pdb`). If found, the PDB
is subject to the same matching criteria (GUIDs and age) as would
have been used had it been in the original location.
This same-directory-as-the-binary rule is commonly used by debuggers
on Windows.
Differential Review: https://reviews.llvm.org/D84815
This patch has no effect for C and C++. In more dynamic languages,
such as Objective-C and Swift GetByteSize() needs to call into the
language runtime, so it's important to pass one in where possible. My
primary motivation for this is some work I'm doing on the Swift
branch, however, it looks like we are also seeing warnings in
Objective-C that this may resolve. Everything in the SymbolFile
hierarchy still passes in nullptrs, because we don't have an execution
context in SymbolFile, since SymbolFile transcends processes.
Differential Revision: https://reviews.llvm.org/D84267
Summary:
When evaluating an expression referencing a constexpr static member variable, an
error is issued because the PDB does not specify a symbol with an address that
can be relocated against.
Rather than attempt to resolve the variable's value within the IR execution, the
values of all constants can be looked up and incorporated into the AST of the
record type as a literal, mirroring the original compiler AST.
This change applies to DIA and native PDB loaders.
Patch By: jackoalan
Reviewers: aleksandr.urakov, jasonmolenda, zturner, jdoerfert, teemperor
Reviewed By: aleksandr.urakov
Subscribers: sstefan1, lldb-commits, llvm-commits, #lldb
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D82160
Types that came from a Clang module are nested in DW_TAG_module tags
in DWARF. This patch recreates the Clang module hierarchy in LLDB and
1;95;0csets the owning module information accordingly. My primary motivation
is to facilitate looking up per-module APINotes for individual
declarations, but this likely also has other applications.
This reapplies the previously reverted commit, but without support for
ClassTemplateSpecializations, which I'm going to look into separately.
rdar://problem/59634380
Differential Revision: https://reviews.llvm.org/D75488
Types that came from a Clang module are nested in DW_TAG_module tags
in DWARF. This patch recreates the Clang module hierarchy in LLDB and
sets the owning module information accordingly. My primary motivation
is to facilitate looking up per-module APINotes for individual
declarations, but this likely also has other applications.
rdar://problem/59634380
Differential Revision: https://reviews.llvm.org/D75488
Summary:
All of our lookup APIs either use `CompilerDeclContext &` or `CompilerDeclContext *` semi-randomly it seems.
This leads to us constantly converting between those two types (and doing nullptr checks when going from
pointer to reference). It also leads to the confusing situation where we have two possible ways to express
that we don't have a CompilerDeclContex: either a nullptr or an invalid CompilerDeclContext (aka a default
constructed CompilerDeclContext).
This moves all APIs to use references and gets rid of all the nullptr checks and conversions.
Reviewers: labath, mib, shafik
Reviewed By: labath, shafik
Subscribers: shafik, arphaman, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74607
LLDB has a few different styles of header guards and they're not very
consistent because things get moved around or copy/pasted. This patch
unifies the header guards across LLDB and converts everything to match
LLVM's style.
Differential revision: https://reviews.llvm.org/D74743
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
The previously landed patch got reverted because it was lacking:
(1) A plugin definition for the Objective-C language runtime,
(2) The dependency between the Static and WASM dynamic loader,
(3) Explicit initialization of ScriptInterpreterNone for lldb-test.
All issues have been addressed in this patch.
Differential revision: https://reviews.llvm.org/D73067