Before we used the capture tracker to follow pointer uses, now we do it
explicitly ourselves through the Attributor API. There are multiple
benefits: For one, the boilerplate is cut down by a lot. The class,
potential copies vector, etc. is all not needed anymore. We also do
avoid explicitly looking through memory here, something that was
duplicated and should only live in the `checkForAllUses~ helper. More
importantly, as we do simplifications we need to make sure all parties
are in sync when they reason about uses. The old way did not allow us to
do this but the new one does as every use visiting AA goes through
`checkForAllUses` now..
As replacements will become more complex it is better to have a single
AA responsible for replacing a use. Before this patch AAValueSimplify*
and AAValueSimplifyReturned could both try to replace the returned
value. The latter was marginally better for the old pass manager
when a function was already carrying a `returned` attribute and when
the context of the return instruction was important. The second
shortcoming was resolved by looking for return attributes in the
AAValueSimplifyCallSiteReturned initialization. The old PM impact is
not concerning.
This is yet another step towards the removal of AAReturnedValues, the
very first AA we should now try to eliminate due to the overlapping
logic with value simplification.
There was some ad-hoc handling of liveness and manifest to avoid
breaking CGSCC guarantees. Things always slipped through though.
This cleanup will:
1) Prevent us from manifesting any "information" outside the CGSCC.
This might be too conservative but we need to opt-in to annotation
not try to avoid some problematic ones.
2) Avoid running any liveness analysis outside the CGSCC. We did have
some AAIsDeadFunction handling to this end but we need this for all
AAIsDead classes. The reason is that AAIsDead information is only
correct if we actually manifest it, since we don't (see point 1) we
cannot actually derive/use it at all. We are currently trying to
avoid running any AA updates outside the CGSCC but that seems to
impact things quite a bit.
3) Assert, don't check, that our modifications (during cleanup) modifies
only CGSCC functions.
In an attempt to remove the memory leak we introduced a double free.
The problem was that we allowed a plain copy of the state and it was
actually used. The use was useless, so it is gone now. The copy
constructor is gone as well. The move constructor ensures the Accesses
pointers are owned by a single state, I hope.
Reported by: https://lab.llvm.org/buildbot/#/builders/16/builds/25820
Dropping this restriction seems to work fine (there are no assertion
failures), so it appears that either the updater got smarter or the
problematic cases are restricted elsewhere.
If doing this still causes issues, then the place to address it
would probably be 8f5bdaf481/llvm/lib/Transforms/IPO/Attributor.cpp (L1856-L1859),
which already prevents replacement outside the SCC, so I'm not
quite sure what this check is intended to avoid.
Differential Revision: https://reviews.llvm.org/D120987
This check is not compatible with opaque pointers. We can avoid
it by adjusting the getPointerAlignment() implementation to avoid
creating unnecessary ptrtoint expressions for bitcasted pointers.
The code already uses OnlyIfReduced to not create an expression
if it does not simplify, and this makes sure that folding a
bitcast and ptrtoint into a ptrtoint doesn't count as a
simplification.
Differential Revision: https://reviews.llvm.org/D120904
We already look through memory to determine where a value that is stored
might pop up again (potential copies). This patch introduces the other
direction with similar logic. If a value is loaded, we can follow all
the accesses to the pointer (or better object) and try to determine what
value might have been stored.
Both `undef` and `nullptr` are maximally aligned. This is especially
important as we often see `undef` until a proper value has been
identified during simplification.
With D106397 we used CFG reasoning to filter out writes that will not
interfere with a given load instruction. With this patch we use the
same logic (modulo the reversal in reachability check order) for store
instructions. As an example, we can now proof stores to shared memory
are dead if all the loads of the shared memory are not reachable from
them.
Heap-2-stack and heap-2-shared can replace an allocation call with
something else. To avoid us deriving information from the allocator
implementation we register a simplification callback now that will
force us to stop at the call site. We probably should create the
replacement memory eagerly and return that instead though.
While we can use range information when we derive dereferenceability we
must make sure to pick he right end of the range. Before we always went
with the minimal offset, which is not correct if we want to combine
the base dereferenceability with some offset. In that case it's the
maximum that gives the correct result.
We already have a check for !InstQueries.empty(), so move the for-range over InstQueries inside to avoid the AAReachability uninitialized variable static analysis warnings.
Prior to this change, LLVM would attempt to optimize an
aligned_alloc(33, ...) call to the stack. This flunked an assertion when
trying to emit the alloca, which crashed LLVM. Avoid that with extra
checks.
Differential Revision: https://reviews.llvm.org/D119604
Prior to this change, LLVM would attempt to optimize an
aligned_alloc(33, ...) call to the stack. This flunked an assertion when
trying to emit the alloca, which crashed LLVM. Avoid that with extra
checks.
Differential Revision: https://reviews.llvm.org/D119604
With
668c5c688b
we introduced an ordering issue revealed by the reverse iteration
buildbot. Depending on the order of the map that tracks the AAIsDead AAs
we ended up with slightly different attributes. This is not totally
unexpected and can happen. We should however be deterministic in our
orderings to avoid such issues.
When we move an allocation from the heap to the stack we need to
allocate it in the alloca AS and then cast the result. This also
prevents us from inserting the alloca after the allocation call but
rather right before.
Fixes https://github.com/llvm/llvm-project/issues/53858
When we use liveness for edges during the `genericValueTraversal` we
need to make sure to use the AAIsDead of the correct function. This
patch adds the proper logic and some simple caching scheme. We also
add an assertion to the `isEdgeDead` call to make sure future misuse
is detected earlier.
Fixes https://github.com/llvm/llvm-project/issues/53872
`UsedAssumedInformation` is a return argument utilized to determine what
information is known. Most APIs used it already but
`genericValueTraversal` did not. This adds it to `genericValueTraversal`
and replaces `AllCallSitesKnown` of `checkForAllCallSites` with the
commonly used `UsedAssumedInformation`.
This was supposed to be a NFC commit, then the test change appeared.
Turns out, we had one user of `AllCallSitesKnown` (AANoReturn) and the
way we set `AllCallSitesKnown` was wrong as we ignored the fact some
call sites were optimistically assumed dead. Included a dedicated test
for this as well now.
Fixes https://github.com/llvm/llvm-project/issues/53884
New users might want to check bins without a load or store instruction
at hand. Since we use those instructions only to find the offset and
size of the access anyway, we can expose an offset and size interface
to the outside world as well.
This commit mainly moves code around and exposes a class (OffsetAndSize)
as well as a method forallInterferingAccesses in AAPointerInfo.
Differential Revision: https://reviews.llvm.org/D119249
The oversight caused us to ignore call sites that are effectively dead
when we computed reachability (or more precise the call edges of a
function). The problem is that loads in the readonly callee might depend
on stores prior to the callee. If we do not track the call edge we
mistakenly assumed the store before the call cannot reach the load.
The problem is nicely visible in:
`llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll`
Caused by D118673.
Fixes https://github.com/llvm/llvm-project/issues/53726
When we privatize a pointer (~argument promotion) we introduce new
private allocas as replacement. These need to be placed in the alloca
address space as later passes cannot properly deal with them otherwise.
Fixes https://github.com/llvm/llvm-project/issues/53725
The helper `Attributor::checkForAllReturnedValuesAndReturnInsts`
simplifies the returned value optimistically. In `AAUndefinedBehavior`
we cannot use such optimistic values when deducing UB. As a result, we
assumed UB for the return value of a function because we initially
(=optimistically) thought the function return is `undef`. While we later
adjusted this properly, the `AAUndefinedBehavior` was under the
impression the return value is "known" (=fix) and could never change.
To correct this we use `Attributor::checkForAllInstructions` and then
manually to perform simplification of the return value, only allowing
known values to be used. This actually matches the other UB deductions.
Fixes#53647
Changes the remark to emit on the function call that captures the globalized
variable instead of the globalized variable itself. The user should be able to
see which variable it was in the argument list of the function.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106980
To make usage easier (compared to the many reachability related AAs),
this patch introduces a helper API, `AA::isPotentiallyReachable`, which
performs all the necessary steps. It also does the "backwards"
reachability (see D106720) as that simplifies the AA a lot (backwards
queries were somewhat different from the other query resolvers), and
ensures we use cached values in every stage.
To test inter-procedural reachability in a reasonable way this patch
includes an extension to `AAPointerInfo::forallInterferingWrites`.
Basically, we can exclude writes if they cannot reach a load "during the
lifetime" of the allocation. That is, we need to go up the call graph to
determine reachability until we can determine the allocation would be
dead in the caller. This leads to new constant propagations (through
memory) in `value-simplify-pointer-info-gpu.ll`.
Note: The new code contains plenty debug output to determine how
reachability queries are resolved.
Parts extracted from D110078.
Differential Revision: https://reviews.llvm.org/D118673
D106720 introduced features that did not work properly as we could add
new queries after a fixpoint was reached and which could not be answered
by the information gathered up to the fixpoint alone.
As an alternative to D110078, which forced eager computation where we
want to continue to be lazy, this patch fixes the problem.
QueryAAs are AAs that allow lazy queries during their lifetime. They are
never fixed if they have no outstanding dependences and always run as
part of the updates in an iteration. To determine if we are done, all
query AAs are asked if they received new queries, if not, we only need
to consider updated AAs, as before. If new queries are present we go for
another iteration.
Differential Revision: https://reviews.llvm.org/D118669
This patch implement instruction reachability for AAFunctionReachability
attribute. It is used to tell if a certain instruction can reach a function
transitively.
NOTE: I created a new commit based of D106720 and set the author back to
Kuter. Other metadata, etc. is wrong. I also addressed the
remaining review comments and fixed the unit test.
Differential Revision: https://reviews.llvm.org/D106720
We missed out on AANoRecurse in the module pass because we had no call
graph. With AAFunctionReachability we can simply ask if the function may
reach itself.
Differential Revision: https://reviews.llvm.org/D110099
genericValueTraversal can look through arguments and allow value
simplification across function boundaries. In fact, the latter already
happened unchecked. With this change we allow the user of
genericValueTraversal to opt-out of interprocedural traversal if
required. We explicitly look through arguments now which helps to do
various things, incl. the propagation of constants into OpenMP parallel
regions (on the host).
We have two attributes that can answer readnone queries. While there is
a dependence between them, it seems best to not force the users to know
what AA to ask. The helpers also allow to check for readonly nicely.
Test changes show where we now deduce readnone but haven't before,
mostly because we only asked AAMemoryBehavior and not AAMemoryLocation.
AANoAlias has not been ported to the new API yet.
Since D104432 we can look through memory by analyzing all writes that
might interfere with a load. This patch provides some logic to exclude
writes that cannot interfere with a location, due to CFG reasoning.
We make sure to avoid multi-thread write-read situations properly while
we ignore writes that cannot reach a load or writes that will be
overwritten before the load is reached.
Differential Revision: https://reviews.llvm.org/D106397
No-sync is a property that we need in more places as complex
transformations emerge. To simplify the query we provide an
`AA::isNoSyncInst` helper now and expose two existing helpers through
the `AANoSync` class.
This relies on existing APIs and avoids accessing the pointer
element type. The alternative would be to extend getPointerOperand()
to also return the accessed type, but I figured going through
MemoryLocation would be cleaner.
Differential Revision: https://reviews.llvm.org/D117868