NVPTX does not support generating binary files, which is required for
these tests.
The majority of tests in 'DebugInfo/Generic' also require emitting
object files, so they all are disabled for NVPTX.
Differential Revision: https://reviews.llvm.org/D121996
These tests are located in 'X86' subfolders which means that they should
be compiled for that target. As they did not have the target specified
explicitly, they in fact were compiled for a default target triple. Not
all targets support all required features for these tests; for example,
if NVPTX is used as a default triple, the tests fail. The patch makes the
tests run for 'x86_64', thus they pass regardless of the default target.
Differential Revision: https://reviews.llvm.org/D121998
Compiler only emits a comment for `Int_MemBarrier`, so it should
be marked as a meta-instruction, which can help improve accuracy
of debug location.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D121879
This patch adjusts what location is picked for a known variable value --
preferring to leave locations on the stack, even when a value is re-loaded
into a register. The benefit is reduced location list entropy, on a
clang-3.4 build I found that .debug_loclists reduces in size by 6%, from
29Mb down to 27Mb.
Testing: a few tests need the stack slot to be written to explicitly, to
force LiveDebugValues into restoring the variable location to a register.
I've added an explicit test for the desired behaviour in
livedebugvalues_recover_clobbers.mir .
Differential Revision: https://reviews.llvm.org/D120732
`DIE::getUnitDie` looks up parent DIE until compile unit or type unit is found. However for skeleton CU with debug fission, we would have DW_TAG_skeleton_unit instead of DW_TAG_compile_unit as top level DIE.
This change fixes the look up so we can get DW_TAG_skeleton_unit as UnitDie for skeleton CU.
Differential Revision: https://reviews.llvm.org/D120610
The existing handling produced crash for test case (attached with patch).
Now the function transferSRADebugInfo is modified to
- Ignore the current variable if it starts after the current Fragment.
- Ignore the current variable if it ends before the current Fragment.
- Generate (!DIExpression()) if current variable completely fits the
current Fragment.
- Otherwise (as earlier), generate the DW_OP_LLVM_fragment in IR if current
Fragment partially defines current variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D121107
When lowering LLVM-IR to instruction referencing stuff, if a value is
defined by a COPY, we try and follow the register definitions back to where
the value was defined, and build an instruction reference to that
instruction. In a few scenarios (such as arguments), this isn't possible.
I added some assertions to catch cases that weren't explicitly whitelisted.
Over the course of a few months, several more scenarios have cropped up,
the lastest is the llvm.read_register intrinsic, which lets LLVM-IR read an
arbitary register at any point. In the face of this, there's little point
in validating whether debug-info reads a register in an expected scenario.
Thus: this patch just deletes those assertions, and adds a regression test
to check that something is done with the llvm.read_register intrinsic.
Fixes#54190
Differential Revision: https://reviews.llvm.org/D121001
This is a clean-up patch. The functional pass was rolled into the module pass in D112732.
Reviewed By: vitalybuka, aeubanks
Differential Revision: https://reviews.llvm.org/D120674
When parsing MachineMemOperands, MIRParser treated the "align" keyword
the same as "basealign". Really "basealign" should specify the
alignment of the MachinePointerInfo base value, and "align" should
specify the alignment of that base value plus the offset.
This worked OK when the specified alignment was no larger than the
alignment of the offset, but in cases like this it just caused
confusion:
STW killed %18, 4, %stack.1.ap2.i.i :: (store (s32) into %stack.1.ap2.i.i + 4, align 8)
MIRPrinter would never have printed this, with an offset of 4 but an
align of 8, so it must have been written by hand. MIRParser would
interpret "align 8" as "basealign 8", but I think it is better to give
an error and force the user to write "basealign 8" if that is what they
really meant.
Differential Revision: https://reviews.llvm.org/D120400
Change-Id: I7eeeefc55c2df3554ba8d89f8809a2f45ada32d8
`DebugInfo/Generic/no-empty-child-vars.ll` `FAIL`s on SPARC. As discussed
in D95617 <https://reviews.llvm.org/D95617>, this is yet another instance
of Issue #46473.
As was done for other failures due to this bug, this patch `XFAIL`s the test.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D120238
A global variable may have the same name as a label, and ptxas does not accept it.
Prefix labels with $L__ to fix this.
Reviewed By: MaskRay, tra
Differential Revision: https://reviews.llvm.org/D119669
This new-ish LEA-fixup code path creates two substitutions for an
instruction number -- this is incorrect because each Value should be
replaced by a single replacement Value. Fix by deleting the duplicate
substitution. Add some test coverage for this path with debug-info
attached.
Differential Revision: https://reviews.llvm.org/D119232
It's inevitable that optimisation passes will fail to update debug-info:
when that happens, it's best if the compiler doesn't crash as a result.
Therefore, downgrade a few assertions / failure modes that would crash
when illegal debug-info was seen, to instead drop variable locations. In
practice this means that an instruction reference to a nonexistant or
illegal operand should be tolerated.
Differential Revision: https://reviews.llvm.org/D118998
When we enable -fsplit-dwarf-inlining we end up with two entries
in .debug_aranges for each CU. Because it processes Skeleton CU
inline information and DWO CU.
Furthermore address calculations were incorrect because we were processing sections in Skeleton CU.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D118857
`DebugInfo/Generic/missing-abstract-variable.ll` `FAIL`s on SPARC. When
`x` is inlined into `a`, the variable `s` is elided completely, so the
corresponding `CHECK`s fail. Exactly the same happens on RISCV and the
test has already been `XFAIL`ed there.
This patch does the same on SPARC.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D119122
The convert only worked on CUs in main binary.
If it's a skeleton CU it will now use the DWO CU
when invoking handleDie.
Test Plan:
llvm-lit
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D118521
After discussion in D116821 this was turned off in 74db5c8c95,
14aaaa1236 applied to limit the maximum memory consumption in rare
conditions, plus some performance patches.
This is a follow-up to D117877: variable assignments of DBG_VALUE $noreg,
or DBG_INSTR_REFs where no value can be found, are represented by a
DbgValue object with Kind "Undef", explicitly meaning "there is no value".
In D117877 I added a special-case to some assignment accounting faster,
without considering this scenario. It causes variables to be given the
value ValueIDNum::EmptyValue, which then ends up being a DenseMap key. The
DenseMap asserts, because EmptyValue is the tombstone key.
Fix this by handling the assign-undef scenario in the special case, to
match what happens in the general case: the variable has no value if it's
only ever assigned $noreg / undef.
Differential Revision: https://reviews.llvm.org/D118715
Was reverted in 1c1b670a73 as it broke all non-x86 bots. Original commit
message:
[DebugInfo][InstrRef] Add a max-stack-slots-to-track cut-out
In certain circumstances with things like autogenerated code and asan, you
can end up with thousands of Values live at the same time, causing a large
working set and a lot of information spilled to the stack. Unfortunately
InstrRefBasedLDV doesn't cope well with this and consumes a lot of memory
when there are many many stack slots. See the reproducer in D116821.
It seems very unlikely that a developer would be able to reason about
hundreds of live named local variables at the same time, so a huge working
set and many stack slots is an indicator that we're likely analysing
autogenerated or instrumented code. In those cases: gracefully degrade by
setting an upper bound on the amount of stack slots to track. This limits
peak memory consumption, at the cost of dropping some variable locations,
but in a rare scenario where it's unlikely someone is actually going to
use them.
In terms of the patch, this adds a cl::opt for max number of stack slots to
track, and has the stack-slot-numbering code optionally return None. That
then filters through a number of code paths, which can then chose to not
track a spill / restore if it touches an untracked spill slot. The added
test checks that we drop variable locations that are on the stack, if we
set the limit to zero.
Differential Revision: https://reviews.llvm.org/D118601
This reverts commit ab4756338c.
Breaks some cases, including this:
namespace {
template <typename> struct a {};
} // namespace
class c {
c();
};
class b {
b();
a<c> ax;
};
b::b() {}
c::c() {}
By producing a reference to a type unit for "c" but not producing the type unit.
In certain circumstances with things like autogenerated code and asan, you
can end up with thousands of Values live at the same time, causing a large
working set and a lot of information spilled to the stack. Unfortunately
InstrRefBasedLDV doesn't cope well with this and consumes a lot of memory
when there are many many stack slots. See the reproducer in D116821.
It seems very unlikely that a developer would be able to reason about
hundreds of live named local variables at the same time, so a huge working
set and many stack slots is an indicator that we're likely analysing
autogenerated or instrumented code. In those cases: gracefully degrade by
setting an upper bound on the amount of stack slots to track. This limits
peak memory consumption, at the cost of dropping some variable locations,
but in a rare scenario where it's unlikely someone is actually going to
use them.
In terms of the patch, this adds a cl::opt for max number of stack slots to
track, and has the stack-slot-numbering code optionally return None. That
then filters through a number of code paths, which can then chose to not
track a spill / restore if it touches an untracked spill slot. The added
test checks that we drop variable locations that are on the stack, if we
set the limit to zero.
Differential Revision: https://reviews.llvm.org/D118601
These test cases all rely on a default target being specified. Adding
the requirement gets the tests properly skipped when
LLVM_DEFAULT_TARGET_TRIPLE is unset.
DWARF64 was implemented at version 3, so if a DWARF version less than 3 is specified, DWARF64 does not get selected. Since XCOFF64 requires DWARF64, the modified tests fail on 64-bit AIX. This patch bumps these tests to dwarf version 3 to maintain test coverage on 64-bit AIX.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D114110
If we only assign a variable value a single time, we can take a short-cut
when computing its location: the variable value is only valid up to the
dominance frontier of where the assignemnt happens. Past that point, there
are other predecessors from where the variable has no value, meaning the
variable has no location past that point.
This patch recognises this scenario, and avoids expensive SSA computation,
to improve compile-time performance.
Differential Revision: https://reviews.llvm.org/D117877
Shiny new DBG_PHI instruction usually have physical registers as operands
-- however, the machine verifier checks to see whether they're live, and
occasionally this fails. There's a filter for DBG_VALUE instructions to not
get verified in this way: expand it to exempt all debug instructions from
liveness checking, which means DBG_PHIs get treated like DBG_VALUEs.
This also future proofs against us adding new debug instructions.
Differential Revision: https://reviews.llvm.org/D117891
By reordering the objects on the stack frame after looking at the users, a
better utilization of displacement operands will result. This means less
needed Load Address instructions for the accessing of these objects.
This is important for very large functions where otherwise small changes
could cause a lot more/less accesses go out of range.
Note: this is not yet enabled for SystemZXPLINKFrameLowering, but should be.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D115690
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Relanding (I accidentally pushed an earlier version of the patch previously).
Differential Revision: https://reviews.llvm.org/D118183
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Differential Revision: https://reviews.llvm.org/D118183
DIStringType is used to encode the debug info of a character object
in Fortran. A Fortran deferred-length character object is typically
implemented as a pair of the following two pieces of info: An address
of the raw storage of the characters, and the length of the object.
The stringLocationExp field contains the DIExpression to get to the
raw storage.
This patch also enables the emission of DW_AT_data_location attribute
in a DW_TAG_string_type debug info entry based on stringLocationExp
in DIStringType.
A test is also added to ensure that the bitcode reader is backward
compatible with the old DIStringType format.
Differential Revision: https://reviews.llvm.org/D117586
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Differential Revision: https://reviews.llvm.org/D118183
Over in the comments for D116821, some use-cases have cropped up where
there's a substantial increase in memory usage. A quick inspection
shows that a) it's a lot of memory and b) there are several things to
be done to reduce it. Reverting (via disabling this feature by default)
to avoid bothering people in the meantime.
LLVM DebugInfo CodeGen synthesizes type declarations in type units when
referencing types that are not in type units. When those synthesized
types are templates and simplified template names (or mangled simplified
template names) are in use, the template arguments must be attached to
those declarations.
A deeper fix (with a CU or DICompositeType flag) that would also support
other uses of clang's -debug-forward-template-args (such as Sony's
platform) could/should be implemented to fix this more broadly.
Doing this causes a declaration of the internal linkage (anonymous
namespace) type to be emitted in the type unit, which would then be
ambiguous as to which internal linkage definition it refers to (since
the name is only valid internally).
It's possible these internal linkage types could be resolved relative to
the unit the TU is referred to from - but that doesn't seem ideal, and
there's no reason to put the type in a type unit since it can only be
defined in one CU anyway (since otherwise it'd be an ODR violation) & so
avoiding the type unit should be a smaller DWARF encoding anyway.
This also addresses an issue with Simplified Template Names where the
template parameter could not be rebuilt from the declaration emitted
into the TU (specifically for an enum non-type template parameter, where
looking up the enumerators is necessary to rebuild the full template
name)
Fix PR53163 by rounding the byte size of DW_TAG_base_type types up. Without
this fix we risk emitting types with a truncated size (including rounding
less-than-byte-sized types' sizes down to zero).
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D117124
This patch adds support for the MSVC /HOTPATCH flag: https://docs.microsoft.com/sv-se/cpp/build/reference/hotpatch-create-hotpatchable-image?view=msvc-170&viewFallbackFrom=vs-2019
The flag is translated to a new -fms-hotpatch flag, which in turn adds a 'patchable-function' attribute for each function in the TU. This is then picked up by the PatchableFunction pass which would generate a TargetOpcode::PATCHABLE_OP of minsize = 2 (which means the target instruction must resolve to at least two bytes). TargetOpcode::PATCHABLE_OP is only implemented for x86/x64. When targetting ARM/ARM64, /HOTPATCH isn't required (instructions are always 2/4 bytes and suitable for hotpatching).
Additionally, when using /Z7, we generate a 'hot patchable' flag in the CodeView debug stream, in the S_COMPILE3 record. This flag is then picked up by LLD (or link.exe) and is used in conjunction with the linker /FUNCTIONPADMIN flag to generate extra space before each function, to accommodate for live patching long jumps. Please see: d703b92296/lld/COFF/Writer.cpp (L1298)
The outcome is that we can finally use Live++ or Recode along with clang-cl.
NOTE: It seems that MSVC cl.exe always enables /HOTPATCH on x64 by default, although if we did the same I thought we might generate sub-optimal code (if this flag was active by default). Additionally, MSVC always generates a .debug$S section and a S_COMPILE3 record, which Clang doesn't do without /Z7. Therefore, the following MSVC command-line "cl /c file.cpp" would have to be written with Clang such as "clang-cl /c file.cpp /HOTPATCH /Z7" in order to obtain the same result.
Depends on D43002, D80833 and D81301 for the full feature.
Differential Revision: https://reviews.llvm.org/D116511
This patch writes the full -cc1 command into the resulting .OBJ, like MSVC does. This allows for external tools (Recode, Live++) to rebuild a source file without any external dependency but the .OBJ itself (other than the compiler) and without knowledge of the build system.
The LF_BUILDINFO record stores a full path to the compiler, the PWD (CWD at program startup), a relative or absolute path to the source, and the full CC1 command line. The stored command line is self-standing (does not depend on the environment). In the same way, MSVC doesn't exactly store the provided command-line, but an expanded version (a somehow equivalent of CC1) which is also self-standing.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
This prevents crashes in the OpenMP offload pipeline as not everything
is properly annotated with debug information, e.g., the runtimes we link
in. While we might want to have them annotated, it seems to be generally
useful to gracefully handle missing debug info rather than crashing.
TODO: A test is missing and can hopefully be distilled prior to landing.
This fixes#51079.
Differential Revision: https://reviews.llvm.org/D116959
I based this off of the API already create for llvm.dbg.value since both
intrinsics have the same arguments at the API level.
I added some tests exercising the API a little as well as an additional small
test that shows how one can use llvm.dbg.addr to limit the PC range where an
address value is available in the debugger. This is done by calling
llvm.dbg.value with undef and the same metadata info as one used to create the
llvm.dbg.addr.
rdar://83957028
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D117442