All LLVM backends use MCDisassembler as a base class for their
instruction decoders. Use "const MCDisassembler *" for the decoder
instead of "const void *". Remove unnecessary static casts.
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D122245
This patch extends support for generating huge stack frames on 64-bit XPLINK by implementing the ABI-mandated call to the stack extension routine.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D120450
Add support for va intrinsics for the XPLINK ABI.
Only the extended vararg variant, which uses a pointer to next
argument, is supported. The standard variant will build on this.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D120148
The tablegen lines that specify the XPLINK64 calling convention for promoting an f32 vararg to an f64 are effectively overwritten by the following tablegen line which bitcast an f64 vararg to an i64 (so that it can be used in the GPRs). It becomes a bitcast from f32 to i64.
Since we don't handle a bitcast for f32s this caused an assertion.
With XPLINK, dynamic stack allocations requires calling
a runtime function, which allocates the stack memory,
moves the register save area, and returns the new
stack pointer.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D119732
With XPLINK, a no-op with information about the call type is emitted
after each call instruction. Centralizing it has the advantage that it is
easy to document all cases, and it makes it easier to extend it later
(e.g. dynamic stack allocation, 32 bit mode).
Also add a test checking the call types emitted so far.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D119557
The XPLINK return `b 2(7)` has size 4 bytes, while the Linux return
`br 7` only has size 2 bytes. Thus a new alias is required to have correct
instruction byte count. It also fixes the conditional return code.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D119437
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/MC/MCParser/MCAsmParser.h no longer includes llvm/MC/MCParser/MCAsmLexer.h
Preprocessed lines to build llvm on my setup:
after: 1068185081
before: 1068324320
So no compile time benefit to expect, but we still get the looser coupling
between files which is great.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119359
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
Return false from ShouldShrinkFPConstant(), so that these constants are stored
in their full size on the constant pool, even if they could have been shrunk
and used with an extending load.
This is better since LD is faster than LDE, and it also enables reg/mem opcodes.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D117927
By reordering the objects on the stack frame after looking at the users, a
better utilization of displacement operands will result. This means less
needed Load Address instructions for the accessing of these objects.
This is important for very large functions where otherwise small changes
could cause a lot more/less accesses go out of range.
Note: this is not yet enabled for SystemZXPLINKFrameLowering, but should be.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D115690
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This flag was set in the presence of stacksave/stackrestore in order to force
a frame pointer.
This should however not be needed per the comment in MachineFrameInfo.h
stating that a a variable sized object "...is the sole condition which
prevents frame pointer elimination", and experiments have also shown that
there seems to be no effect whatsoever on code generation with ManipulatesSP.
Review: Ulrich Weigand
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
This patch adds support for prologue and epilogue generation for the z/OS target under the XPLINK64 ABI for functions with a stack size of less than 1048576 bytes (huge stack frames).
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D114457
This patch adds support for prologue and epilogue generation for
the z/OS target under the XPLINK64 ABI for functions with a stack
size of less than 1048576 bytes (huge stack frames).
Reviewed by: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D114457
The AsmParser checks the range of a PC-relative operand, but only if it is
immediate.
This patch adds range checks for operands in applyFixup(), at which point the
offset to a label is known.
The diagnostic message for an operand that is out of range is explicit (with
given value and min/max limits). This is now also done for displacement
fixups.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D114194
Memset with a constant length was implemented with a single store followed by
a series of MVC:s. This patch changes this so that one store of the byte is
emitted for each MVC, which avoids data dependencies between the MVCs. An
MVI/STC + MVC(len-1) is done for each block.
In addition, memset with a variable length is now also handled without a
libcall. Since the byte is first stored and then MVC is used from that
address, a length of two must now be subtracted instead of one for the loop
and EXRL. This requires an extra check for the one-byte case, which is
handled in a special block with just a single MVI/STC (like GCC).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D112004
AMDGPU is unusual in that the both stack is indexed in the same
direction as stack growth (up). We therefore always need the emergency
stack slots placed as low as possible to ensure they are in range of
load/store instruction immediate offsets. The existing logic is mostly
OK, but failed if we required stack realignment.
I don't understand what the existing control isFPCloseToIncomingSP is
supposed to mean, but can only be used to stop placing the scavenge
slots earlier. Make this explicit so that targets can opt-in rather
than opt-out only.
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493