Instead of awkwardly encoding calling-convention information with ISD::CALL,
ISD::FORMAL_ARGUMENTS, ISD::RET, and ISD::ARG_FLAGS nodes, TargetLowering
provides three virtual functions for targets to override:
LowerFormalArguments, LowerCall, and LowerRet, which replace the custom
lowering done on the special nodes. They provide the same information, but
in a more immediately usable format.
This also reworks much of the target-independent tail call logic. The
decision of whether or not to perform a tail call is now cleanly split
between target-independent portions, and the target dependent portion
in IsEligibleForTailCallOptimization.
This also synchronizes all in-tree targets, to help enable future
refactoring and feature work.
llvm-svn: 78142
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.
Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.
This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
CStringSection_. Factor the code better.
5. fixes some bugs in string lowering on ELF targets.
llvm-svn: 77294
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
With the SVR4 ABI on PowerPC, vector arguments for vararg calls are passed differently depending on whether they are a fixed or a variable argument. Variable vector arguments always go into memory, fixed vector arguments are put
into vector registers. If there are no free vector registers available, fixed vector arguments are put on the stack.
The NumFixedArgs attribute allows to decide for an argument in a vararg call whether it belongs to the fixed or variable portion of the parameter list.
llvm-svn: 74764
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
llvm-svn: 74564
FP_TO_XINT. Necessary for some cleanups I'm working on. Updated
from the previous version (r72431) to fix a bug and make some things a
bit clearer.
llvm-svn: 72445
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
llvm-svn: 70225
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
llvm-svn: 69952
- Fix fabs, fneg for f32 and f64.
- Use BuildVectorSDNode.isConstantSplat, now that the functionality exists
- Continue to improve i64 constant lowering. Lower certain special constants
to the constant pool when they correspond to SPU's shufb instruction's
special mask values. This avoids the overhead of performing a shuffle on a
zero-filled vector just to get the special constant when the memory load
suffices.
llvm-svn: 67067
instruction. The class also consolidates the code for detecting constant
splats that's shared across PowerPC and the CellSPU backends (and might be
useful for other backends.) Also introduces SelectionDAG::getBUID_VECTOR() for
generating new BUILD_VECTOR nodes.
llvm-svn: 65296
Many targets build placeholder nodes for special operands, e.g.
GlobalBaseReg on X86 and PPC for the PIC base. There's no
sensible way to associate debug info with these. I've left
them built with getNode calls with explicit DebugLoc::getUnknownLoc operands.
I'm not too happy about this but don't see a good improvement;
I considered adding a getPseudoOperand or something, but it
seems to me that'll just make it harder to read.
llvm-svn: 63992
- Rename fcmp.ll test to fcmp32.ll, start adding new double tests to fcmp64.ll
- Fix select_bits.ll test
- Capitulate to the DAGCombiner and move i64 constant loads to instruction
selection (SPUISelDAGtoDAG.cpp).
<rant>DAGCombiner will insert all kinds of 64-bit optimizations after
operation legalization occurs and now we have to do most of the work that
instruction selection should be doing twice (once to determine if v2i64
build_vector can be handled by SelectCode(), which then runs all of the
predicates a second time to select the necessary instructions.) But,
CellSPU is a good citizen.</rant>
llvm-svn: 62990
- Ensure that (operation) legalization emits proper FDIV libcall when needed.
- Fix various bugs encountered during llvm-spu-gcc build, along with various
cleanups.
- Start supporting double precision comparisons for remaining libgcc2 build.
Discovered interesting DAGCombiner feature, which is currently solved via
custom lowering (64-bit constants are not legal on CellSPU, but DAGCombiner
insists on inserting one anyway.)
- Update README.
llvm-svn: 62664
sequences in SPUDAGToDAGISel.cpp and SPU64InstrInfo.td, killing custom
DAG node types as needed.
- i64 mul is now a legal instruction, but emits an instruction sequence
that stretches tblgen and the imagination, as well as violating laws of
several small countries and most southern US states (just kidding, but
looking at a function with 80+ parameters is really weird and just plain
wrong.)
- Update tests as needed.
llvm-svn: 62254
- Add preliminary support for v2i32; load/store generates the right code but
there's a lot work to be done to make this vector type operational.
llvm-svn: 61829
- Fix bugs 3194, 3195: i128 load/stores produce correct code (although, we
need to ensure that i128 is 16-byte aligned in real life), and 128 zero-
extends are supported.
- New td file: SPU128InstrInfo.td: this is where all new i128 support should
be put in the future.
- Continue to hammer on i64 operations and test cases; ensure that the only
remaining problem will be i64 mul.
llvm-svn: 61784
- Remove custom lowering for BRCOND
- Add remaining functionality for branches in SPUInstrInfo, such as branch
condition reversal and load/store folding. Updated BrCond test to reflect
branch reversal.
llvm-svn: 61597
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
llvm-svn: 61542
instruction sequence and cannot ordinarily be simplified by DAGcombine
into the various target description files or SPUDAGToDAGISel.cpp.
This makes some 64-bit operations legal.
- Eliminate target-dependent ISD enums.
- Update tests.
llvm-svn: 61508
- Move v4i32, i32 mul into SPUInstrInfo.td, with a few more instruction
cleanups there as well.
- Make SMUL_LOHI, UMUL_LOHI competely illegal for Cell SPU, to better
assist Chris to see the problem in bug 3101.
llvm-svn: 61464
DAGcombine's ability to find reasons to remove truncates when they were not
needed. Consequently, the CellSPU backend would produce correct, but _really
slow and horrible_, code.
Replaced with instruction sequences that do the equivalent truncation in
SPUInstrInfo.td.
- Re-examine how unaligned loads and stores work. Generated unaligned
load code has been tested on the CellSPU hardware; see the i32operations.c
and i64operations.c in CodeGen/CellSPU/useful-harnesses. (While they may be
toy test code, it does prove that some real world code does compile
correctly.)
- Fix truncating stores in bug 3193 (note: unpack_df.ll will still make llc
fault because i64 ult is not yet implemented.)
- Added i64 eq and neq for setcc and select/setcc; started new instruction
information file for them in SPU64InstrInfo.td. Additional i64 operations
should be added to this file and not to SPUInstrInfo.td.
llvm-svn: 61447
- Fix bug 3185, with misc other cleanups.
- Needed to implement SPUInstrInfo::InsertBranch(). CAUTION: Not sure what
gets or needs to get passed to InsertBranch() to insert a conditional
branch. This will abort for now until a good test case shows up.
llvm-svn: 60811
- Change default scheduling preference to list-burr, which produces somewhat
better code than the default. Could also use list-tdrr, but need to ask
dev list about the appropriate handy mnemonic before commiting.
llvm-svn: 60738
- Add v4f32, v2f64 to LowerVECTOR_SHUFFLE
- Look for vector rotate in shuffle elements, generate a vector rotate
instead of a full-blown shuffle when opportunity presents itself.
- Generate larger test harness and fix a few interesting but obscure bugs.
llvm-svn: 60552
- First patch from Nehal Desai, a new contributor at Aerospace. Nehal's patch
fixes sign/zero/any-extending loads for integers and floating point. Example
code, compiled w/o debugging or optimization where he first noticed the bug:
int main(void) {
float a = 99.0;
printf("%d\n", a);
return 0;
}
Verified that this code actually works on a Cell SPU.
Changes by Scott Michel:
- Fix bug in the value type list constructed by SPUISD::LDRESULT to include
both the load result's result and chain, not just the chain alone.
- Simplify LowerLOAD and remove extraneous and unnecessary chains.
- Remove unused SPUISD pseudo instructions.
llvm-svn: 60526
- Incorporate Tilmann Scheller's ISD::TRUNCATE custom lowering patch
- Update SPU calling convention info, even if it's not used yet (but can be
at some point or another)
- Ensure that any-extended f32 loads are custom lowered, especially when
they're promoted for use in printf.
llvm-svn: 60438
- Fix v2[if]64 vector insertion code before IBM files a bug report.
- Ensure that zero (0) offsets relative to $sp don't trip an assert
(add $sp, 0 gets legalized to $sp alone, tripping an assert)
- Shuffle masks passed to SPUISD::SHUFB are now v16i8 or v4i32
llvm-svn: 60358
ReplaceNodeResults: rather than returning a node which
must have the same number of results as the original
node (which means mucking around with MERGE_VALUES,
and which is also easy to get wrong since SelectionDAG
folding may mean you don't get the node you expect),
return the results in a vector.
llvm-svn: 60348
(a) Slight rethink on i64 zero/sign/any extend code - use a shuffle to
directly zero-extend i32 to i64, but use rotates and shifts for
sign extension. Also ensure unified register consistency.
(b) Add new test harness for i64 operations: i64ops.ll
llvm-svn: 59970
(a) Improve the extract element code: there's no need to do gymnastics with
rotates into the preferred slot if a shuffle will do the same thing.
(b) Rename a couple of SPUISD pseudo-instructions for readability and better
semantic correspondence.
(c) Fix i64 sign/any/zero extension lowering.
llvm-svn: 59965
(a) Remove moved file (SPUAsmPrinter.cpp) to make svn happy.
(b) Remove truncated stores that will never be used.
(c) Add initial support for __muldi3 as a libcall.
llvm-svn: 59734
so that va_start/va_arg/et.al. will walk arguments correctly for Cell SPU.
N.B.: Because neither clang nor llvm-gcc-4.2 can be built for CellSPU, this is
still unexorcised code.
llvm-svn: 58415
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
llvm-svn: 57748
- Add linkage to SymbolSDNode (default to external).
- Change ISD::ExternalSymbol to ISD::Symbol.
- Change ISD::TargetExternalSymbol to ISD::TargetSymbol
These changes pave the way to allowing SymbolSDNodes with non-external linkage.
llvm-svn: 56249
Currently it just holds the calling convention and flags
for isVarArgs and isTailCall.
And it has several utility methods, which eliminate magic
5+2*i and similar index computations in several places.
CallSDNodes are not CSE'd. Teach UpdateNodeOperands to handle
nodes that are not CSE'd gracefully.
llvm-svn: 56183
instructions in CellSPU as "Expand" so that they won't be generated. I added a
"FIXME" so that this hack can be addressed and reverted once ISD::ROTR is
supported in the .td files.
llvm-svn: 55582
to be passed the list of value types, and use this
where appropriate. Inappropriate places are where
the value type list is already known and may be
long, in which case the existing method is more
efficient.
llvm-svn: 53035
purpose, and give it a custom SDNode subclass so that it doesn't
need to have line number, column number, filename string, and
directory string, all existing as individual SDNodes to be the
operands.
This was the only user of ISD::STRING, StringSDNode, etc., so
remove those and some associated code.
This makes stop-points considerably easier to read in
-view-legalize-dags output, and reduces overhead (creating new
nodes and copying std::strings into them) on code containing
debugging information.
llvm-svn: 52924
it impossible to create a MERGE_VALUES node with
only one result: sometimes it is useful to be able
to create a node with only one result out of one of
the results of a node with more than one result, for
example because the new node will eventually be used
to replace a one-result node using ReplaceAllUsesWith,
cf X86TargetLowering::ExpandFP_TO_SINT. On the other
hand, most users of MERGE_VALUES don't need this and
for them the optimization was valuable. So add a new
utility method getMergeValues for creating MERGE_VALUES
nodes which by default performs the optimization.
Change almost everywhere to use getMergeValues (and
tidy some stuff up at the same time).
llvm-svn: 52893
of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
llvm-svn: 52098
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
llvm-svn: 52044
fixes are target-specific lowering of frame indices, fix constants generated
for the FSMBI instruction, and fixing SPUTargetLowering::computeMaskedBitsFor-
TargetNode().
llvm-svn: 50462