Now that the WebAssembly SIMD specification is finalized and engines are
generally up-to-date, there is no need for a separate target feature for gating
SIMD instructions that engines have not implemented. With this change,
v128.const is now enabled by default with the simd128 target feature.
Differential Revision: https://reviews.llvm.org/D98457
The new `-fsanitize-address-destructor-kind=` option allows control over how module
destructors are emitted by ASan.
The new option is consumed by both the driver and the frontend and is propagated into
codegen options by the frontend.
Both the legacy and new pass manager code have been updated to consume the new option
from the codegen options.
It would be nice if the new utility functions (`AsanDtorKindToString` and
`AsanDtorKindFromString`) could live in LLVM instead of Clang so they could be
consumed by other language frontends. Unfortunately that doesn't work because
the clang driver doesn't link against the LLVM instrumentation library.
rdar://71609176
Differential Revision: https://reviews.llvm.org/D96572
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
D94700 removed the static library so we no longer need to pass
`-llibomptarget-nvptx` to `nvlink`. Since the bitcode library is the only device
runtime for now, instead of emitting a warning when it is not found, an error
should be raised. We also set a new option `libomptarget-nvptx-bc-path` to let
user choose which bitcode library is being used.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D95161
The help text for `-I` was recently expanded in [1]. The expanded
version focuses on explaining the semantics of `-I` in Clang. We are now
in the process of adding support for `-I` in Flang and this new
description is incompatible with the semantics of `-I` in Flang. This
was brought up in this review:
* https://reviews.llvm.org/D93453
This patch reverts the original change in Options.td. This way the help
text for `-I` remains generic enough so that it applies to both Clang
and Flang.
The expanded description of `-I` from [1] is moved to the
`DocBrief` field for `-I`. This field is prioritised over the help text
when generating ClangCommandLineReference.rst, so the user facing
documentation for Clang retains the expanded description:
* https://clang.llvm.org/docs/ClangCommandLineReference.html
`DocBrief` fields are currently not used in Flang.
As requested in the reviews, the help text and the expanded description
are slightly refined.
[1] Commit: 8dd4e3ceb8
Differential Revision: https://reviews.llvm.org/D94169
PowerPC cores like e200z759n3 [1] using an efpu2 only support single precision
hardware floating point instructions. The single precision instructions efs*
and evfs* are identical to the spe float instructions while efd* and evfd*
instructions trigger a not implemented exception.
This patch introduces a new command line option -mefpu2 which leads to
single-hardware / double-software code generation.
[1] Core reference:
https://www.nxp.com/files-static/32bit/doc/ref_manual/e200z759CRM.pdf
Differential revision: https://reviews.llvm.org/D92935
Added support for the options mabi=vec-extabi and mabi=vec-default which are analogous to qvecnvol and qnovecnvol when using XL on AIX.
The extended Altivec ABI on AIX is enabled using mabi=vec-extabi in clang and vec-extabi in llc.
Reviewed By: Xiangling_L, DiggerLin
Differential Revision: https://reviews.llvm.org/D89684
This patch mainly made the following changes:
1. Support AVX-VNNI instructions;
2. Introduce ExplicitVEXPrefix flag so that vpdpbusd/vpdpbusds/vpdpbusds/vpdpbusds instructions only use vex-encoding when user explicity add {vex} prefix.
Differential Revision: https://reviews.llvm.org/D89105
- AMDGPUUsage.rst: Correct AMD GPU DWARF address space table address
sizes which are in bits and not bytes.
- clang/.../Options.td: Improve description of AMD GPU options.
- Re-generate ClangComamndLineReference.rst from clang/.../Options.td .
Differential Revision: https://reviews.llvm.org/D90364
SUMMARY:
In IBM compiler xlclang , there is an option -fnovisibility which suppresses visibility. For more details see: https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.xlcpp161.aix.doc/compiler_ref/opt_visibility.html.
We need to add the option -mignore-xcoff-visibility for compatibility with the IBM AIX OS (as the option is enabled by default in AIX). With this option llvm does not emit any visibility attribute to ASM or XCOFF object file.
The option only work on the AIX OS, for other non-AIX OS using the option will report an unsupported options error.
In AIX OS:
1.1 the option -mignore-xcoff-visibility is enabled by default , if there is not -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command .
1.2 if there is -fvisibility=* explicitly but not -mignore-xcoff-visibility explicitly in the clang command. it will generate visibility attributes.
1.3 if there are both -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command. The option "-mignore-xcoff-visibility" wins , it do not emit the visibility attribute.
The option -mignore-xcoff-visibility has no effect on visibility attribute when compile with -emit-llvm option to generated LLVM IR.
Reviewer: daltenty,Jason Liu
Differential Revision: https://reviews.llvm.org/D87451
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
We currently have strict floating point/constrained floating point enabled
for all targets. Constrained SDAG nodes get converted to the regular ones
before reaching the target layer. In theory this should be fine.
However, the changes are exposed to users through multiple clang options
already in use in the field, and the changes are _completely_ _untested_
on almost all of our targets. Bugs have already been found, like
"https://bugs.llvm.org/show_bug.cgi?id=45274".
This patch disables constrained floating point options in clang everywhere
except X86 and SystemZ. A warning will be printed when this happens.
Use the new -fexperimental-strict-floating-point flag to force allowing
strict floating point on hosts that aren't already marked as supporting
it (X86 and SystemZ).
Differential Revision: https://reviews.llvm.org/D80952
This patch creates a clang flag to enable SESES. This flag also ensures that
lvi-cfi is on when using seses via clang.
SESES should use lvi-cfi to mitigate returns and indirect branches.
The flag to enable the SESES functionality only without lvi-cfi is now
-x86-seses-enable-without-lvi-cfi to warn users part of the mitigation is not
enabled if they use this flag. This is useful in case folks want to see the
cost of SESES separate from the LVI-CFI.
Reviewed By: sconstab
Differential Revision: https://reviews.llvm.org/D79910
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
This patch adds clang options:
-fbasic-block-sections={all,<filename>,labels,none} and
-funique-basic-block-section-names.
LLVM Support for basic block sections is already enabled.
+ -fbasic-block-sections={all, <file>, labels, none} : Enables/Disables basic
block sections for all or a subset of basic blocks. "labels" only enables
basic block symbols.
+ -funique-basic-block-section-names: Enables unique section names for
basic block sections, disabled by default.
Differential Revision: https://reviews.llvm.org/D68049
Summary:
Change the default ABI to be compatible with GCC. For 32-bit ELF
targets other than Linux, Clang now returns small structs in registers
r3/r4. This affects FreeBSD, NetBSD, OpenBSD. There is no change for
32-bit Linux, where Clang continues to return all structs in memory.
Add clang options -maix-struct-return (to return structs in memory) and
-msvr4-struct-return (to return structs in registers) to be compatible
with gcc. These options are only for PPC32; reject them on PPC64 and
other targets. The options are like -fpcc-struct-return and
-freg-struct-return for X86_32, and use similar code.
To actually return a struct in registers, coerce it to an integer of the
same size. LLVM may optimize the code to remove unnecessary accesses to
memory, and will return i32 in r3 or i64 in r3:r4.
Fixes PR#40736
Patch by George Koehler!
Reviewed By: jhibbits, nemanjai
Differential Revision: https://reviews.llvm.org/D73290
This pass replaces each indirect call/jump with a direct call to a thunk that looks like:
lfence
jmpq *%r11
This ensures that if the value in register %r11 was loaded from memory, then
the value in %r11 is (architecturally) correct prior to the jump.
Also adds a new target feature to X86: +lvi-cfi
("cfi" meaning control-flow integrity)
The feature can be added via clang CLI using -mlvi-cfi.
This is an alternate implementation to https://reviews.llvm.org/D75934 That merges the thunk insertion functionality with the existing X86 retpoline code.
Differential Revision: https://reviews.llvm.org/D76812
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
This reverts commit 0a9fc9233e.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This adds a check for the usage of -foptimization-record-file with
multiple -arch options. This is not permitted since it would require us
to rename the file requested by the user to avoid overwriting it for the
second cc1 invocation.
Provides support for using r6-r11 as globally scoped
register variables. This requires a -ffixed-rN flag
in order to reserve rN against general allocation.
If for a given GRV declaration the corresponding flag
is not found, or the the register in question is the
target's FP, we fail with a diagnostic.
Differential Revision: https://reviews.llvm.org/D68862
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
And move the relevant information in the doc.
Summary:
Currently, building a large software like Firefox shows
'Use chrome://tracing or Speedscope App (https://www.speedscope.app) for flamegraph visualization'
for each file.
Reviewers: anton-afanasyev
Reviewed By: anton-afanasyev
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68260
llvm-svn: 373308
-dA was in the d_group, which is a preprocessor state dumping group.
However -dA is a debug flag to cause a verbose asm. It was already
implemented to do the same thing as -fverbose-asm, so make it just be an
alias.
llvm-svn: 369926
Summary:
Move `-ftime-trace-granularity` option to frontend options. Without patch
this option is showed up in the help for any tool that links libSupport.
Reviewers: sammccall
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65202
llvm-svn: 366911
This flag is analoguous to other flags like -nostdlib or -nolibc
and could be used to disable linking of profile runtime library.
This is useful in certain environments like kernel, where profile
instrumentation is still desirable, but we cannot use the standard
runtime library.
llvm-svn: 365808
This patch allows clang users to print out a list of supported CPU models using
clang [--target=<target triple>] --print-supported-cpus
Then, users can select the CPU model to compile to using
clang --target=<triple> -mcpu=<model> a.c
It is a handy feature to help cross compilation.
llvm-svn: 363464
Summary:
This updates all places in documentation that refer to "Mac OS X", "OS X", etc.
to instead use the modern name "macOS" when no specific version number is
mentioned.
If a specific version is mentioned, this attempts to use the OS name at the time
of that version:
* Mac OS X for 10.0 - 10.7
* OS X for 10.8 - 10.11
* macOS for 10.12 - present
Reviewers: JDevlieghere
Subscribers: mgorny, christof, arphaman, cfe-commits, lldb-commits, libcxx-commits, llvm-commits
Tags: #clang, #lldb, #libc, #llvm
Differential Revision: https://reviews.llvm.org/D62654
llvm-svn: 362113
Summary:
1. Enable infrastructure of AVX512_BF16, which is supported for BFLOAT16 in Cooper Lake;
2. Enable intrinsics for VCVTNE2PS2BF16, VCVTNEPS2BF16 and DPBF16PS instructions, which are Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
For more details about BF16 intrinsic, please refer to the latest ISE document: https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
Patch by LiuTianle
Reviewers: craig.topper, smaslov, LuoYuanke, wxiao3, annita.zhang, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60552
llvm-svn: 360018
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
Handle it in the driver and propagate it to cc1
Reviewers: rjmccall, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D52615
llvm-svn: 346001
Summary:
Making X[8-15,18] registers call-saved is used to support
CONFIG_ARM64_LSE_ATOMICS in Linux kernel.
Signed-off-by: Tri Vo <trong@android.com>
Reviewers: srhines, nickdesaulniers, javed.absar
Reviewed By: nickdesaulniers
Subscribers: kristof.beyls, jfb, cfe-commits
Differential Revision: https://reviews.llvm.org/D52399
llvm-svn: 342990
Summary: Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, efriedma, nickdesaulniers, srhines, phosek
Reviewed By: nickdesaulniers
Subscribers: manojgupta, jfb, cfe-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D48581
llvm-svn: 342100
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in as the function attribute
"null-pointer-is-valid"="true".
This CL only adds the attribute on the function.
It also strips "nonnull" attributes from function arguments but
keeps the related warnings unchanged.
Corresponding LLVM change rL336613 already updated the
optimizations to not treat null pointer dereferencing
as undefined if the attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: jyknight
Subscribers: drinkcat, xbolva00, cfe-commits
Differential Revision: https://reviews.llvm.org/D47894
llvm-svn: 337433
Summary:
In many cases we can't devirtualize
because definition of vtable is not present. Most of the
time it is caused by inline virtual function not beeing
emitted. Forcing emitting of vtable adds a reference of these
inline virtual functions.
Note that GCC was always doing it.
Reviewers: rjmccall, rsmith, amharc, kuhar
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D47108
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 334600
Register x20 is a callee-saved register which may be used for other
purposes in certain contexts, for example to hold special variables
within the kernel. This change adds support for reserving this register
both to frontend and backend to make this register usable for these
purposes.
Differential Revision: https://reviews.llvm.org/D46552
llvm-svn: 334531
in gcc by https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html.
The -mibt feature flag is being removed, and the -fcf-protection
option now also defines a CET macro and causes errors when used
on non-X86 targets, while X86 targets no longer check for -mibt
and -mshstk to determine if -fcf-protection is supported. -mshstk
is now used only to determine availability of shadow stack intrinsics.
Comes with an LLVM patch (D46882).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46881
llvm-svn: 332704
The WBNOINVD instruction writes back all modified
cache lines in the processor’s internal cache to main memory
but does not invalidate (flush) the internal caches.
Reviewers: craig.topper, zvi, ashlykov
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D43817
llvm-svn: 329848
Currently we always include PTX into the fatbin along
with the GPU code.It about doubles the size of the GPU binary
we need to carry in the executable. These options allow control
inclusion of PTX into GPU binary.
This patch does not change the defaults, though we may consider
making no-PTX the default in the future.
Differential Revision: https://reviews.llvm.org/D45495
llvm-svn: 329737
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. This vendor extension to DWARF v5 allows source text to be
embedded directly in the line tables of the debug line section.
Add new flag (-g[no-]embed-source) to Driver and CC1 which indicates
that source should be passed through to LLVM during CodeGen.
Differential Revision: https://reviews.llvm.org/D42766
llvm-svn: 326102