Based on the discussion at [1], this patch adds a Clang flag called
-fexperimental-library that controls whether experimental library
features are provided in libc++. In essence, it links against the
experimental static archive provided by libc++ and defines a feature
that can be picked up by libc++ to enable experimental features.
This ensures that users don't start depending on experimental
(and hence unstable) features unknowingly.
[1]: https://discourse.llvm.org/t/rfc-a-compiler-flag-to-enable-experimental-unstable-language-and-library-features
Differential Revision: https://reviews.llvm.org/D121141
Currently if `--sysroot /` is passed to the Clang driver, the include paths generated by the Clang driver will start with a double slash: `//usr/include/...`.
If VFS is used to inject files into the include paths (for example, the Swift compiler does this), VFS will get confused and the injected files won't be visible.
This change makes sure that the include paths start with a single slash.
Fixes#28283.
Differential Revision: https://reviews.llvm.org/D126289
Following the new flow for external object code emission,
provide flags to switch between integrated and external
backend similar to the integrated assembler options.
SPIR-V target is the only user of this functionality at
this point.
This patch also updated SPIR-V documentation to clarify
that integrated object code emission for SPIR-V is an
experimental feature.
Differential Revision: https://reviews.llvm.org/D125679
In order to do offloading compilation we need to embed files into the
host and create fatbainaries. Clang uses a special binary format to
bundle several files along with their metadata into a single binary
image. This is currently performed using the `-fembed-offload-binary`
option. However this is not very extensibile since it requires changing
the command flag every time we want to add something and makes optional
arguments difficult. This patch introduces a new tool called
`clang-offload-packager` that behaves similarly to CUDA's `fatbinary`.
This tool takes several input files with metadata and embeds it into a
single image that can then be embedded in the host.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125165
The target profile option(/T) decide the shader model when compile hlsl.
The format is shaderKind_major_minor like ps_6_1.
The shader model is saved as llvm::Triple is clang/llvm like
dxil-unknown-shadermodel6.1-hull.
The main job to support the option is translating ps_6_1 into
shadermodel6.1-pixel.
That is done inside tryParseProfile at HLSL.cpp.
To integrate the option into clang Driver, a new DriverMode DxcMode is
created. When DxcMode is enabled, OSType for TargetTriple will be
forced into Triple::ShaderModel. And new ToolChain HLSLToolChain will
be created when OSType is Triple::ShaderModel.
In HLSLToolChain, ComputeEffectiveClangTriple is overridden to call
tryParseProfile when targetProfile option is set.
To make test work, Fo option is added and .hlsl is added for active
-xhlsl.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D122865
Patch by: Xiang Li <python3kgae@outlook.com>
clang -extract-api should accept multiple headers and forward them to a
single CC1 instance. This change introduces a new ExtractAPIJobAction.
Currently API Extraction is done during the Precompile phase as this is
the current phase that matches the requirements the most. Adding a new
phase would need to change some logic in how phases are scheduled. If
the headers scheduled for API extraction are of different types the
driver emits a diagnostic.
Differential Revision: https://reviews.llvm.org/D121936
This patch introduces a linker wrapper tool that allows us to preprocess
files before they are sent to the linker. This adds a dummy action and
job to the driver stage that builds the linker command as usual and then
replaces the command line with the wrapper tool.
Depends on D116543
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116544
This patch builds on the change in D117634 that expanded the short
triples when passed in by the user. This patch adds the same
functionality for the `-Xopenmp-target=` flag. Previously it was
unintuitive that passing `-fopenmp-targets=nvptx64
-Xopenmp-target=nvptx64 <arg>` would not forward the arg because the
triples did not match on account of `nvptx64` being expanded to
`nvptx64-nvidia-cuda`.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118495
This method introduces new CMake variable
PPC_LINUX_DEFAULT_IEEELONGDOUBLE (false by default) to enable fp128 as
default long double format.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D118110
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Clang searches for runtimes (e.g. libclang_rt*) first in a
subdirectory named for the target triple (corresponding to
LLVM_ENABLE_PER_TARGET_RUNTIME_DIR=ON), then if it's not found uses
.../lib/<os>/libclang_rt* with a suffix corresponding to the arch and
environment name.
Android triples optionally include an API level indicating the minimum
Android version to be run on
(e.g. aarch64-unknown-linux-android21). When compiler-rt is built with
LLVM_ENABLE_PER_TARGET_RUNTIME_DIR=ON this API level is part of the
output path.
Linking code built for a later API level against a runtime built for
an earlier one is safe. In projects with several API level targets
this is desireable to avoid re-building the same runtimes many
times. This is difficult with the current runtime search method: if
the API levels don't exactly match Clang gives up on the per-target
runtime directory path.
To enable this more simply, this change tries target triple without
the API level before falling back on the old layout.
Another option would be to try every API level in the triple,
e.g. check aarch-64-unknown-linux-android21, then ...20, then ...19,
etc.
Differential Revision: https://reviews.llvm.org/D115049
This patch adds a toolchain (TC) for SPIR-V along with the
following changes in Driver and base ToolChain and Tool.
This is required to provide a mechanism in clang to bypass
SPIR-V backend in LLVM for SPIR-V until it lands in LLVM and
matures.
The SPIR-V code is generated by the SPIRV-LLVM translator tool
named 'llvm-spirv' that is sought in 'PATH'.
The compilation phases/actions should be bound for SPIR-V in
the meantime as following:
compile -> tools::Clang
backend -> tools::SPIRV::Translator
assemble -> tools::SPIRV::Translator
However, Driver’s ToolSelector collapses compile-backend-assemble
and compile-backend sequences to tools::Clang. To prevent this,
added new {use,has}IntegratedBackend properties in ToolChain and
Tool to which the ToolSelector reacts on, and which SPIR-V TC
overrides.
Linking of multiple input files is currently not supported but
can be added separately.
Differential Revision: https://reviews.llvm.org/D112410
Co-authored-by: Henry Linjamäki <henry.linjamaki@parmance.com>
Before, the CLANG_DEFAULT_LINKER cmake option was a global override for
the linker that shall be used on all toolchains. The linker binary
specified that way may not be available on toolchains with custom
linkers. Eg, the only linker for VE is named 'nld' - any other linker
invalidates the toolchain.
This patch removes the hard override and instead lets the generic
toolchain implementation default to CLANG_DEFAULT_LINKER. Toolchains
can now deviate with a custom linker name or deliberatly default to
CLANG_DEFAULT_LINKER.
Reviewed By: MaskRay, phosek
Differential Revision: https://reviews.llvm.org/D115045
ld.lld used by Android ignores .note.GNU-stack and defaults to noexecstack,
so the `-z noexecstack` linker option is unneeded.
The `--noexecstack` assembler option is unneeded because AsmPrinter.cpp
prints `.section .note.GNU-stack,"",@progbits` (when `llvm.init.trampoline` is unused),
so the assembler won't synthesize an executable .note.GNU-stack.
Reviewed By: danalbert
Differential Revision: https://reviews.llvm.org/D113840
The driver uses class SanitizerArgs to store parsed sanitizer arguments. It keeps a cached
SanitizerArgs object in ToolChain and uses it for different jobs. This does not work if
the sanitizer options are different for different jobs, which could happen when an
offloading toolchain translates the options for different jobs.
To fix this, SanitizerArgs should be created by using the actual arguments passed
to jobs instead of the original arguments passed to the driver, since the toolchain
may change the original arguments. And the sanitizer arguments should be diagnose
once.
This patch also fixes HIP toolchain for handling -fgpu-sanitize: a warning is emitted
for GPU's not supporting sanitizer and skipped. This is for backward compatibility
with existing -fsanitize options. -fgpu-sanitize is also turned on by default.
Reviewed by: Artem Belevich, Evgenii Stepanov
Differential Revision: https://reviews.llvm.org/D111443
Use the new sys::path::is_style_posix() and is_style_windows() in a few
places that need to detect the system's native path style.
In llvm/lib/Support/Path.cpp, this patch removes most uses of the
private `real_style()`, where is_style_posix() and is_style_windows()
are just a little tidier.
Elsewhere, this removes `_WIN32` macro checks. Added a FIXME to a
FileManagerTest that seemed fishy, but maintained the existing
behaviour.
Differential Revision: https://reviews.llvm.org/D112289
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
HIP currently uses -mlink-builtin-bitcode to link all bitcode libraries, which
changes the linkage of functions to be internal once they are linked in. This
works for common bitcode libraries since these functions are not intended
to be exposed for external callers.
However, the functions in the sanitizer bitcode library is intended to be
called by instructions generated by the sanitizer pass. If their linkage is
changed to internal, their parameters may be altered by optimizations before
the sanitizer pass, which renders them unusable by the sanitizer pass.
To fix this issue, HIP toolchain links the sanitizer bitcode library with
-mlink-bitcode-file, which does not change the linkage.
A struct BitCodeLibraryInfo is introduced in ToolChain as a generic
approach to pass the bitcode library information between ToolChain and Tool.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D110304
Moving `InputInfo.h` from `lib/Driver/` into `include/Driver` to be able to expose it in an API consumed from outside of `clangDriver`.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106787
x86_64-linux-gnu and x86_64-linux-gnux32 use different ABIs and objects
built for one cannot be used for the other. In order to build and use
compiler-rt for x32, we need to treat x32 as a new arch there. This
updates the driver to search using the new arch name.
Reviewed By: glaubitz
Differential Revision: https://reviews.llvm.org/D100148
Summary:
We are going to have libc++abi.a and libunwind.a on AIX.
Add the necessary linking command to pick the libraries up.
Reviewed By: daltenty
Differential Revision: https://reviews.llvm.org/D102813
When the target triple was an Apple platform `ToolChain::getOSLibName()`
(called by `getCompilerRTPath()`) would return the full OS name
including the version number (e.g. `darwin20.3.0`). This is not correct
because the library directory for all Apple platforms is `darwin`.
This in turn caused
* `-print-runtime-dir` to return a non-existant path.
* `-print-file-name=<any compiler-rt library>` to return the filename
instead of the full path to the library.
Two regression tests are included.
rdar://77417317
Differential Revision: https://reviews.llvm.org/D101682
This is a partial revert of b4537c3f51
based on the discussion in https://reviews.llvm.org/D101194. Rather
than using the getMultiarchTriple, we use the getTripleString.
Different platforms use different rules for multiarch triples so
it's difficult to provide a single method for all platforms. We
instead move the getMultiarchTriple to the ToolChain class and let
individual platforms override it and provide their custom logic.
Differential Revision: https://reviews.llvm.org/D101194
The new layout more closely matches the layout used by other compilers.
This is only used when LLVM_ENABLE_PER_TARGET_RUNTIME_DIR is enabled.
Differential Revision: https://reviews.llvm.org/D100869
This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
This follows GCC. Having libstdc++/libc++ include paths is not useful
anyway because libstdc++/libc++ header files cannot find features.h.
While here, suppress -stdlib++-isystem with -nostdlibinc.
This moves code that sets the architecture name
and Float ABI into two new functions in
ToolChains/Arch/ARM.cpp. Greatly simplifying ComputeLLVMTriple.
Some light refactoring in setArchNameInTriple to
move local variables closer to their first use.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D98253
Fix regression where we aren't passing `-platform_version` to new ld64.lld after {D95204}.
Most of the changes were originally in D95204, but I backed them out due to
test failures on builds which have `CLANG_DEFAULT_LINKER=lld`. The tests are
properly updated in this diff.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D97741
The new Darwin backend for LLD is now able to link reasonably large
real-world programs on x86_64. For instance, we have achieved
self-hosting for the X86_64 target, where all LLD tests pass when
building lld with itself on macOS. As such, we would like to make it the
default back-end.
The new port is now named `ld64.lld`, and the old port remains
accessible as `ld64.lld.darwinold`
This [annoucement email][1] has some context. (But note that, unlike
what the email says, we are no longer doing this as part of the LLVM 12
branch cut -- instead we will go into LLVM 13.)
Numerous mechanical test changes were required to make this change; in
the interest of creating something that's reviewable on Phabricator,
I've split out the boring changes into a separate diff (D95905). I plan to
merge its contents with those in this diff before landing.
(@gkm made the original draft of this diff, and he has agreed to let me
take over.)
[1]: https://lists.llvm.org/pipermail/llvm-dev/2021-January/147665.html
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D95204
On Android, the unwinder isn't part of the C++ STL and isn't (in older
versions) exported from libc.so. Instead, the driver links the static
unwinder archive implicitly. Currently, the Android NDK implicitly
links libgcc.a to provide both builtins and the unwinder.
To support switching to compiler-rt builtins and libunwind, make
--rtlib=compiler-rt behave the same way on Android, and implicitly pass
-l:libunwind.a to the linker.
Adjust the -ldl logic. For the Android NDK, the unwinder (whether
libgcc.a or libunwind.a) is linked statically and calls a function in
the dynamic loader for finding unwind tables (e.g. dl_iterate_phdr).
On Android, this function is in libc.a for static executables and
libdl.so otherwise, so -ldl is needed. (glibc doesn't need -ldl because
its libc.so exports dl_iterate_phdr.)
Differential Revision: https://reviews.llvm.org/D96403
When targeting a MSVC triple, --dependant-libs with the name of the clang runtime library for profiling is added to the command line args. In it's current implementations clang_rt.profile-<ARCH> is chosen as the name. When building a distribution using LLVM_ENABLE_PER_TARGET_RUNTIME_DIR this fails, due to the runtime file names not having an architecture suffix in the filename.
This patch refactors getCompilerRT and getCompilerRTBasename to always consider per-target runtime directories. getCompilerRTBasename now simply returns the filename component of the path found by getCompilerRT
Differential Revision: https://reviews.llvm.org/D96638
Add option -fgpu-sanitize to enable sanitizer for AMDGPU target.
Since it is experimental, it is off by default.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D96835
Since ToolChain::GetCXXStdlibType() is a simple getter that might emit
the "invalid library name in argument" warning, it can conceivably be
called several times while initializing the build pipeline.
Before this patch, a simple 'clang++ -stdlib=foo ./test.cpp' would print
the warning twice, -rt=lib=foo would print 6 times.
Change this and always only print the warning once. Keep the rest of the
semantics of the functions.
Differential Revision: https://reviews.llvm.org/D95915