Normally we do not link the device libraries if the user passed
`nogpulib` we do this for the standard bitcode library. This behaviour
was not added when using the static library for LTO, causing it to
always be linked in. This patch fixes that.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D129534
With libgcc, we follow the behavior of GCC for backwards compatibility,
only using --as-needed in the non-C++ mode.
With libunwind, there are no backward compatibility requirements so we
can always use --as-needed on all supported platforms.
Differential Revision: https://reviews.llvm.org/D128841
With libgcc, we follow the behavior of GCC for backwards compatibility,
only using --as-needed in the non-C++ mode.
With libunwind, there are no backward compatibility requirements so we
can always use --as-needed on all supported platforms.
Differential Revision: https://reviews.llvm.org/D128841
When linking a Fortran program, we need to add the runtime libraries to
the command line. This is exactly what we do for Linux/Darwin, but the
MSVC interface is slightly different (e.g. -libpath instead of -L).
We also remove oldnames and libcmt, since they're not needed at the
moment and they bring in more dependencies.
We also pass `/subsystem:console` to the linker so it can figure out the
right entry point. This is only needed for MSVC's `link.exe`. For LLD it
is redundant but doesn't hurt.
Differential Revision: https://reviews.llvm.org/D126291
Co-authored-by: Markus Mützel <markus.muetzel@gmx.de>
We shouldn't assume that libunwind.so is available. Rather can defer
the decision to the linker which defaults to libunwind.so, but if .so
isn't available, it'd pick libunwind.a. Users can use -static-libgcc
and -shared-libgcc to override this behavior and explicitly choose
the version they want.
Differential Revision: https://reviews.llvm.org/D127528
This patch simplifies how we unify target features. Now we simply
iterate the input in reverse and only insert the feature if it hasn't
been seen yet. The only reason we need to reverse this at the end is to
keep the features in order for the existing tests.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D127707
As there 3 intercepts that depend on libresolv, link tests in ./configure scripts may be confuse by the presence of resolv symbols (i.e. dn_expand) even with -lresolv and get a runtime error.
Android provides the functionality in libc.
https://reviews.llvm.org/D122849https://reviews.llvm.org/D126851
Reviewed By: eugenis, MaskRay
Differential Revision: https://reviews.llvm.org/D127145
LTO code may end up mixing bitcode files from various sources varying in
their use of opaque pointer types. The current strategy to decide
between opaque / typed pointers upon the first bitcode file loaded does
not work here, since we could be loading a non-opaque bitcode file first
and would then be unable to load any files with opaque pointer types
later.
So for LTO this:
- Adds an `lto::Config::OpaquePointer` option and enforces an upfront
decision between the two modes.
- Adds `-opaque-pointers`/`-no-opaque-pointers` options to the gold
plugin; disabled by default.
- `--opaque-pointers`/`--no-opaque-pointers` options with
`-plugin-opt=-opaque-pointers`/`-plugin-opt=-no-opaque-pointers`
aliases to lld; disabled by default.
- Adds an `-lto-opaque-pointers` option to the `llvm-lto2` tool.
- Changes the clang driver to pass `-plugin-opt=-opaque-pointers` to
the linker in LTO modes when clang was configured with opaque
pointers enabled by default.
This fixes https://github.com/llvm/llvm-project/issues/55377
Differential Revision: https://reviews.llvm.org/D125847
clang by default assumes static library name to be xxx.lib
when -lxxx is specified on Windows with MSVC environment,
instead of libxxx.a.
This patch fixes static device library unbundling for that.
It falls back to libxxx.a if xxx.lib is not found.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D126681
The new test is a copy of the corresponding PS4 test, with the triple
etc updated, because there's currently no good way to make one lit test
"iterate" with multiple targets.
This patch basically extends https://reviews.llvm.org/D122008 with
support for MacOSX/Darwin.
To facilitate this, I've added `MacOSX` to the list of supported OSes in
Target.cpp. Flang already supports `Darwin` and it doesn't really do
anything OS-specific there (it could probably safely skip checking the
OS for now).
Note that generating executables remains hidden behind the
`-flang-experimental-exec` flag. Also, we don't need to add `-lm` on
MacOSX as `libm` is effectively included in `libSystem` (which is linked
in unconditionally).
Differential Revision: https://reviews.llvm.org/D125628
The previous patches allowed us to create a static library containing
all the device code. This patch uses that library to perform the device
runtime linking late when performing LTO. This in addition to
simplifying the libraries, allows us to transparently handle the runtime
library as-needed without needing Clang to manually pass the necessary
library in the linker wrapper job.
Depends on D125315
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125333
In some cases, an error constructing a compiler or assembler job could
leave the Inputs in a state that the code for constructing the linker
job was not ready for.
This removes the -flegacy-pass-manager and
-fno-experimental-new-pass-manager options, and the corresponding
support code in BackendUtil. The -fno-legacy-pass-manager and
-fexperimental-new-pass-manager options are retained as no-ops.
Differential Revision: https://reviews.llvm.org/D123609
Currently, enablement of heap MTE on Android is specified by an ELF note, which
signals to the linker to enable heap MTE. This change allows
-fsanitize=memtag-heap to synthesize these notes, rather than adding them
through the build system. We need to extend this feature to also signal the
linker to do special work for MTE globals (in future) and MTE stack (currently
implemented in the toolchain, but not implemented in the loader).
Current Android uses a non-backwards-compatible ELF note, called
".note.android.memtag". Stack MTE is an ABI break anyway, so we don't mind that
we won't be able to run executables with stack MTE on Android 11/12 devices.
The current expectation is to support the verbiage used by Android, in
that "SYNC" means MTE Synchronous mode, and "ASYNC" effectively means
"fast", using the Kernel auto-upgrade feature that allows
hardware-specific and core-specific configuration as to whether "ASYNC"
would end up being Asynchronous, Asymmetric, or Synchronous on that
particular core, whichever has a reasonable performance delta. Of
course, this is platform and loader-specific.
Differential Revision: https://reviews.llvm.org/D118948
Add CSKY target toolchains to support csky in linux and elf environment.
It can leverage the basic universal Linux toolchain for linux environment, and only add some compile or link parameters.
For elf environment, add a CSKYToolChain to support compile and link.
Also add some parameters into basic codebase of clang driver.
Differential Revision: https://reviews.llvm.org/D121445
Currently, clang-offload-bundler has -inputs and -outputs options that accept
values with comma as the delimiter. This causes issues with file paths
containing commas, which are valid file paths on Linux.
This add two new options -input and -output, which accept one single file,
and allow multiple instances. This allows arbitrary file paths. The old
-inputs and -outputs options will be kept for backward compatibility, but
are not allowed to be used with -input and -output options for simplicity.
In the future, -inputs and -outputs options will be phasing out.
RFC: https://discourse.llvm.org/t/rfc-adding-input-and-output-options-to-clang-offload-bundler/60049
Patch by: Siu Chi Chan
Reviewed by: Yaxun Liu
Differential Revision: https://reviews.llvm.org/D120662
The changes in D122444 caused OpenMP programs built with the
LLVM_ENABLE_RUNTIMES options to stop finding the libraries. We generally
expect to link against the libraries associated with the clang
installation itself but we no longer implicitly included that directory.
This patch adds in the include path of the clang installations library
to ensure we can find them.
Reviewed By: jdoerfert, MaskRay
Differential Revision: https://reviews.llvm.org/D122592
After landing D121813 the binary size increase introduced by this change can be minimized by using --gc-sections link options. D121813 allows each individual callbacks to be optimized out if not used.
Reviewed By: vitalybuka, MaskRay
Differential Revision: https://reviews.llvm.org/D122407
-fsplit-machine-functions is an optimization in codegen phase. when -flto is use, clang generate IR bitcode in .o files, and linker will call into these codegen optimization passes. Current clang driver doesn't pass this option to linker when both -fsplit-machine-functions and -flto are used, so the optimization is silently ignored. My fix generates linker option -plugin-opt=-split-machine-functions for this case. It allows the linker to pass "split-machine-functions" to code generator to turn on that optimization. It works for both gold and lld.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D121969
`hip-openmp-compatible` flag treats hip and hipv4 offload kinds
as compatible with openmp offload kind while extracting code objects
from a heterogenous archive library. Vice versa is also considered
compatible if hip code was compiled with -fgpu-rdc.
This flag only relaxes compatibility criteria on `OffloadKind`,
rest of the components like `Triple` and `GPUArhc` still needs to
be compatible.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D120697
Now that the old device runtime has been deleted there is only a single
target that differs by the triple and the architecture. Simplify the
scheme for identifying the library but directly using the triple.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D119638
Even after D86621 <https://reviews.llvm.org/D86621>, `clang -m32` on
Solaris/sparcv9 doesn't inline atomics with 8-byte operands, unlike `gcc`.
This leads to many link failures in the testsuite (undefined references to
`__atomic_load_8` and `__sync_val_compare_and_swap_8`. Until a proper
codegen fix can be implemented, this patch works around the first of those
by linking with `-latomic`.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D118021
Summary:
The name of the AMDGPU device library was changes. Previously it was
called 'libomptarget-amdgcn'. This patch changes fixes the tests to use
the new name of the library and adds a new flag with the same name.
New device library supporting v4 and v5 has abi_version_400.bc and abi
version_500.bc.
For v5, abi_version_500.bc is linked.
For v2-4, abi_version_400.bc is linked.
For old device library, for v2-4, none of the above is linked. For v5,
error is emitted about unsupported ABI version.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D118949
Fixes: SWDEV-321313
Fixes segfaults on x86_64 caused by instrumented code running before
shadow is set up.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D118171
This reverts commit cf730d8ce1. It turned out that D118184 is causing segfaults in some situations.
Reviewed By: vitalybuka, kda
Differential Revision: https://reviews.llvm.org/D118739
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
GCC added -gz=zlib-gnu in 2014 for -gz meaning change (.zdebug =>
SHF_COMPRESSED) and the legacy zlib-gnu hasn't gain adoption.
According to Debian Code Search (`gz=zlib-gnu`), no project uses -gz=zlib-gnu
(valgrind has a configure to use -gz=zlib). Any possible -gz=zlib-gnu user can
switch to -gz smoothly (supported by integrated assemblers for many years;
binutils 2.26).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D117744
Without this change DSOs fail to link because of missing asan_report_(load|store)n functions.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D118184
This will allow linking in the callbacks directly instead of using PLT.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116182
This will allow linking in the callbacks directly instead of using PLT.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116182
This patch refactors the HIP tool chain for new HIP tool chain, HIPSPV
tool chain, which is added in the follow up patch part 2.
Rename HIPToolChain to HIPAMDToolChain and Renames HIP.* files to HIPAMD.*.
Introduce HIPUtility.* file where common HIP utilities, shared among HIP
tool chain implementations, are placed in.
Move constructHIPFatbinCommand() and
constructGenerateObjFileFromHIPFatBinary() to HIPUtility. HIPSPV tool
chain is going to use them.
Tweak bundle target ID in constructHIPFatbinCommand(): extra dashes are
dropped if the Target ID is empty and 'hip' offload kind is made default
for non-AMD targets.
Patch by: Henry Linjamäki
Reviewed by: Yaxun Liu, Artem Belevich, Eric Christopher
Differential Revision: https://reviews.llvm.org/D110549