Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
This takes into account two specificities of clang: array bounds as macro id
disqualify FAM, as well as non standard layout.
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Previous warning went on whenever a struct with a struct member with alignment => 16
was declared. This led to too many false positives and led to diagnostic lit failures
due to it being emitted too frequently. Only emit the warning when such a struct and
that struct contains a member that has an alignment of 16 bytes is passed to a caller
function since this is where the potential binary compatibility issue with XL 16.1.0
and older exists.
Reviewed By: sfertile, aaron.ballman
Differential Revision: https://reviews.llvm.org/D118350
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Add a fix-it for the common case of setters/constructors using parameters with the same name as fields
```lang=c++
struct A{
int X;
A(int X) { /*this->*/X = X; }
void setX(int X) { /*this->*/X = X;
};
```
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129202
Clang only allows you to use __attribute__((format)) on variadic functions. There are legit use cases for __attribute__((format)) on non-variadic functions, such as:
(1) variadic templates
```c++
template<typename… Args>
void print(const char *fmt, Args… &&args) __attribute__((format(1, 2))); // error: format attribute requires variadic function
```
(2) functions which take fixed arguments and a custom format:
```c++
void print_number_string(const char *fmt, unsigned number, const char *string) __attribute__((format(1, 2)));
// ^error: format attribute requires variadic function
void foo(void) {
print_number_string(“%08x %s\n”, 0xdeadbeef, “hello”);
print_number_string(“%d %s”, 0xcafebabe, “bar”);
}
```
This change allows Clang users to attach __attribute__((format)) to non-variadic functions, including functions with C++ variadic templates. It replaces the error with a GCC compatibility warning and improves the type checker to ensure that received arrays are treated like pointers (this is a possibility in C++ since references to template types can bind to arrays).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D112579
rdar://84629099
D126838 added support for the TYPE_MATCH compile-once run-everywhere
relocation to LLVM proper. On the clang side no changes are necessary,
other than the adjustment of a comment to mention this relocation as well.
This change takes care of that.
Differential Revision: https://reviews.llvm.org/D126839
"Ascii" StringLiteral instances are actually narrow strings
that are UTF-8 encoded and do not have an encoding prefix.
(UTF8 StringLiteral are also UTF-8 encoded strings, but with
the u8 prefix.
To avoid possible confusion both with actuall ASCII strings,
and with future works extending the set of literal encodings
supported by clang, this rename StringLiteral::isAscii() to
isOrdinary(), matching C++ standard terminology.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D128762
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
n = 3: any trailing array member of undefined size is a flexible array member (strict c99 conformance)
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
Use the if/while statement right paren location instead of the end of the
condition expression to determine if the semicolon is on its own line, for the
purpose of not warning about code like this:
while (foo())
;
Using the condition location meant that we would also not report a warning on
code like this:
while (MACRO(a,
b));
body();
The right paren loc wasn't stored in the AST or passed into Sema::ActOnIfStmt
when this logic was first written.
Reviewed By: rnk, gribozavr2
Differential Revision: https://reviews.llvm.org/D128406
XL considers different vector types to be incompatible with each other.
For example assignment between variables of types vector float and vector
long long or even vector signed int and vector unsigned int are diagnosed.
clang, however does not diagnose such cases and does a simple bitcast between
the two types. This could easily result in program errors. This patch is to
fix the implicit casts in altivec.h so that there is no incompatible vector
type errors whit -fno-lax-vector-conversions, this is the prerequisite patch
to switch the default to -fno-lax-vector-conversions later.
Reviewed By: nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D124093
This patch allows the same implicit conversions for vector-scalar
operations in SVE that are allowed for NEON.
Depends on D126377
Reviewed By: c-rhodes
Differential Revision: https://reviews.llvm.org/D126380
In the same spirit as D73543 and in reply to https://reviews.llvm.org/D126768#3549920 this patch is adding support for `__builtin_memset_inline`.
The idea is to get support from the compiler to easily write efficient memory function implementations.
This patch could be split in two:
- one for the LLVM part adding the `llvm.memset.inline.*` intrinsics.
- and another one for the Clang part providing the instrinsic as a builtin.
Differential Revision: https://reviews.llvm.org/D126903
Previously the Expr returned by getOperand() was actually the
subexpression common to the "ready", "suspend", and "resume"
expressions, which often isn't just the operand but e.g.
await_transform() called on the operand.
It's important for the AST to expose the operand as written
in the source for traversals and tools like clangd to work
correctly.
Fixes https://github.com/clangd/clangd/issues/939
Differential Revision: https://reviews.llvm.org/D115187
Ensures an -Wenum-conversion warning happens when one of the enums is
signed and the other is unsigned. Also adds a test file to verify these
warnings.
This warning would not happen since the -Wsign-conversion would make a
diagnostic then return, never allowing the -Wenum-conversion checks.
For example:
C
enum PE { P = -1 };
enum NE { N };
enum NE conv(enum PE E) { return E; }
Before this would only create a diagnostic with -Wsign-conversion and
never on -Wenum-conversion. Now it will create a diagnostic for both
-Wsign-conversion and -Wenum-conversion.
I could change it to just warn on -Wenum-conversion as that was what I
initially did. Seeing PR35200 (or GitHub Issue 316268), I let both
diagnostics check so that the sign conversion could generate a warning.
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.mul intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fmul reduction intrinsic also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fmul support this shouldn't affect the integer case.
Differential Revision: https://reviews.llvm.org/D117829
Compared to the old implementation:
* In C++, we only recurse into aggregate classes.
* Unnamed bit-fields are not printed.
* Constant evaluation is supported.
* Proper conversion is done when passing arguments through `...`.
* Additional arguments are supported and are injected prior to the
format string; this directly supports use with `fprintf`, for example.
* An arbitrary callable can be passed rather than only a function
pointer. In particular, in C++, a function template or overload set is
acceptable.
* All text generated by Clang is printed via `%s` rather than directly;
this avoids issues where Clang's pretty-printing output might itself
contain a `%` character.
* Fields of types that we don't know how to print are printed with a
`"*%p"` format and passed by address to the print function.
* No return value is produced.
Reviewed By: aaron.ballman, erichkeane, yihanaa
Differential Revision: https://reviews.llvm.org/D124221
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.add intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fadd reduction intrinsics also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fadd support this shouldn't affect the integer case.
(Split off from D117829)
Differential Revision: https://reviews.llvm.org/D124741
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
The checkBuiltinArgument helper takes an integer ArgIndex and is
documented as performing normal type-checking on that argument. However,
it mistakenly hardcodes the argument index to zero when retrieving the
argument from the call expression.
This hadn't been noticed previously as all in-tree uses typecheck the
0th argument anyway.
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50, and
64c045e25b
which were reverted in
e75d8b7037
due to a crasher bug where CodeGen would emit a builtin glvalue as an
rvalue if it constant-folds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
std::addressof, plus the libstdc++-specific std::__addressof.
This brings us to parity with the corresponding GCC behavior.
Remove STDBUILTIN macro that ended up not being used.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Currently, clang crashes with i386 target on the following code:
```
void f() {
f + 0xdead000000000000UL;
}
```
This problem is similar to the problem fixed in D104424, but that fix can't handle function pointer case, because `getTypeSizeInCharsIfKnown()` says that size is known and equal to 0 for function type.
This patch prevents bounds checking for function pointer, thus fixes the crash.
Fixes https://github.com/llvm/llvm-project/issues/50463
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D122748
Add support for builtin_[max|min] which has below prototype:
A builtin_max (A1, A2, A3, ...)
All arguments must have the same type; they must all be float, double, or long double.
Internally use SelectCC to get the result.
Reviewed By: qiucf
Differential Revision: https://reviews.llvm.org/D122478
Index of vset/vget must be a constant integer and be
located in right range.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D122629
Calling an ObjC method from a C function marked with the 'enforce_tcb'
attribute did not produce a warning. Now it does, and on top of that
Objective-C methods can participate in TCBs themselves.
Differential Revision: https://reviews.llvm.org/D122343
__builtin_memcpy_inline doesn't use the usual builtin argument validation code,
so it crashed when receiving wrong number of argument. Add the missing validation
check.
Open issue: https://github.com/llvm/llvm-project/issues/52949
Reviewed By: gchatelet
Differential Revision: https://reviews.llvm.org/D121965
Committed by gchatelet on behalf of "Roy Jacobson <roi.jacobson1@gmail.com>"
If we are equality comparing an FP literal with a value cast from a type
where the literal can't be represented, that's known true or false and
probably a programmer error.
Fixes issue #54222.
https://github.com/llvm/llvm-project/issues/54222
Note - I added the optimizer change with:
9397bdc67e
...and as discussed in the post-commit comments, that transform might be
too dangerous without this warning in place, so it was reverted to allow
this change first.
Differential Revision: https://reviews.llvm.org/D121306
This change teaches the Sema logic for `__builtin_memcpy_inline` to implicitly convert arrays passed as arguments to pointers, similarly to regular `memcpy`.
This code will no longer cause a compiler crash:
```
void f(char *p) {
char s[1] = {0};
__builtin_memcpy_inline(p, s, 1);
}
```
rdar://88147527
Differential Revision: https://reviews.llvm.org/D121475
The `__builtin_pdepd` and `__builtin_pextd` are P10 builtins that are meant to
be used under 64-bit only. For instance, when the builtins are compiled under
32-bit mode:
```
$ cat t.c
unsigned long long foo(unsigned long long a, unsigned long long b) {
return __builtin_pextd(a,b);
}
$ clang -c t.c -mcpu=pwr10 -m32
ExpandIntegerResult #0: t31: i64 = llvm.ppc.pextd TargetConstant:i32<6928>, t28, t29
fatal error: error in backend: Do not know how to expand the result of this operator!
```
This patch adds sema checking for these builtins to compile under 64-bit
mode only and on P10. The builtins will emit a diagnostic when they are compiled on
non-P10 compilations and on 32-bit mode.
Differential Revision: https://reviews.llvm.org/D118753