The sampler handling logic in SemaInit.cpp would inadvertently treat
parentheses around sampler arguments as an implicit cast, leading to
an unreachable "can't implicitly cast lvalue to rvalue with
this cast kind". Fix by ignoring parentheses once we are in the
sampler initializer case.
Differential Revision: https://reviews.llvm.org/D66080
llvm-svn: 368561
Fix -Wpessimizing-move and -Wredundant-move when warning on initializer lists.
The new fix-it hints for removing the std::move call will now also suggest
removing the braces for the initializer list so that the resulting code will
still be compilable.
This fixes PR42832
llvm-svn: 368237
This patch extends some existing warnings to utilize the knowledge about the gsl::Pointer and gsl::Owner attributes.
Differential Revision: https://reviews.llvm.org/D64256
llvm-svn: 368072
If we construct an object in some arbitrary non-default addr space
it should fail unless either:
- There is an implicit conversion from the address space to default
/generic address space.
- There is a matching ctor qualified with an address space that is
either exactly matching or convertible to the address space of an
object.
Differential Revision: https://reviews.llvm.org/D62156
llvm-svn: 363944
In addition to being unused and duplicating code, this was also wrong
(it didn't properly mark the operand as being potentially not odr-used).
This reinstates r363340, reverted in r363352.
llvm-svn: 363430
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
In addition to being unused and duplicating code, this was also wrong
(it didn't properly mark the operand as being potentially not odr-used).
llvm-svn: 363340
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
References to arbitrary address spaces can't always be bound to
temporaries. This change extends the reference binding logic to
check that the address space of a temporary can be implicitly
converted to the address space in a reference when temporary
materialization is performed.
Differential Revision: https://reviews.llvm.org/D61318
llvm-svn: 362604
This fixes a crash where we would neglect to mark a destructor referenced for an
__attribute__((no_destory)) array. The destructor is needed though, since if an
exception is thrown we need to cleanup the elements.
rdar://48462498
Differential revision: https://reviews.llvm.org/D61165
llvm-svn: 360446
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
Because diagnostics and their notes are not connected at the API level,
if the error message for an overload is emitted, then the overload
candidates are completed - if a diagnostic is emitted during that work,
the notes related to overload candidates would be attached to the latter
diagnostic, not the original error. Sort of worse, if the latter
diagnostic was disabled, the notes are disabled.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D61357
llvm-svn: 359854
Improved classification of address space cast when qualification
conversion is performed - prevent adding addr space cast for
non-pointer and non-reference types. Take address space correctly
from the pointee.
Also pass correct address space from 'this' object using
AggValueSlot when generating addrspacecast in the constructor
call.
Differential Revision: https://reviews.llvm.org/D59988
llvm-svn: 357682
The various CorrectionCandidateCallbacks are currently heap-allocated
unconditionally. This was needed because of delayed typo correction.
However these allocations represent currently 15.4% of all allocations
(number of allocations) when parsing all of Boost (!), mostly because
of ParseCastExpression, ParseStatementOrDeclarationAfterAttrtibutes
and isCXXDeclarationSpecifier. Note that all of these callback objects
are small. Let's not do this.
Instead initially allocate the callback on the stack, and only do a
heap allocation if we are going to do some typo correction. Do this by:
1. Adding a clone function to each callback, which will do a polymorphic
clone of the callback. This clone function is required to be implemented
by every callback (of which there is a fair amount). Make sure this is
the case by making it pure virtual.
2. Use this clone function when we are going to try to correct a typo.
This additionally cut the time of -fsyntax-only on all of Boost by 0.5%
(not that much, but still something). No functional changes intended.
Differential Revision: https://reviews.llvm.org/D58827
Reviewed By: rnk
llvm-svn: 356925
Before this commit, we emit unavailable errors for calls to functions during
overload resolution, and for references to all other declarations in
DiagnoseUseOfDecl. The early checks during overload resolution aren't as good as
the DiagnoseAvailabilityOfDecl based checks, as they error on the code from
PR40991. This commit fixes this by removing the early checking.
llvm.org/PR40991
rdar://48564179
Differential revision: https://reviews.llvm.org/D59394
llvm-svn: 356599
This change fixes temporary materialization to happen in the right
(default) address space when binding to it a reference of different type.
It adds address space conversion afterwards to match the addr space
of a reference.
Differential Revision: https://reviews.llvm.org/D58634
llvm-svn: 355499
Basically the same issue as string init, except it didn't really have
any visible consequences before I removed the implicit lvalue-to-rvalue
conversion from CodeGen.
While I'm here, a couple minor drive-by cleanups: IgnoreParens never
returns a ConstantExpr, and there was a potential crash with string init
involving a ChooseExpr.
The analyzer test change maybe indicates we could simplify the analyzer
code a little with this fix? Apparently a hack was added to support
lvalues in initializers in r315750, but I'm not really familiar with the
relevant code.
Fixes regression reported in the kernel build at
https://bugs.llvm.org/show_bug.cgi?id=40430#c6 .
Differential Revision: https://reviews.llvm.org/D58069
llvm-svn: 353762
This allows substantially simplifying the expression evaluation code,
because we don't have to special-case lvalues which are actually string
literal initialization.
This currently throws away an optimization where we would avoid creating
an array APValue for string literal initialization. If we really want
to optimize this case, we should fix APValue so it can store simple
arrays more efficiently, like llvm::ConstantDataArray. This shouldn't
affect the memory usage for other string literals. (Not sure if this is
a blocker; I don't think string literal init is common enough for this
to be a serious issue, but I could be wrong.)
The change to test/CodeGenObjC/encode-test.m is a weird side-effect of
these changes: we currently don't constant-evaluate arrays in C, so the
strlen call shouldn't be folded, but lvalue string init managed to get
around that check. I this this is fine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40430 .
llvm-svn: 353569
When we attempt to add an addr space qual to a type already
qualified by an addr space ICE is triggered. Before creating
a type with new address space, remove the old addr space.
Fixing PR38614!
Differential Revision: https://reviews.llvm.org/D57524
llvm-svn: 353160
I recently ran into this code:
```
\#include <iostream>
void foo(const std::string &s, const std::string& = "");
\#include <string>
void test() { foo(""); }
```
The diagnostic produced said it can't bind char[1] to std::string
const&. It didn't mention std::string is incomplete. The user had to
infer that.
This patch causes the diagnostic to now say "incomplete type".
llvm-svn: 352927
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Some style guides want to allow using CTAD only on types that "opt-in"; i.e. on types that are designed to support it and not just types that *happen* to work with it.
This patch implements the `-Wctad-maybe-unsupported` warning, which is off by default, which warns when CTAD is used on a type that does not define any deduction guides.
The following pattern can be used to suppress the warning in cases where the type intentionally doesn't define any deduction guides:
```
struct allow_ctad_t;
template <class T>
struct TestSuppression {
TestSuppression(T) {}
};
TestSuppression(allow_ctad_t)->TestSuppression<void>; // guides with incomplete parameter types are never considered.
```
Reviewers: rsmith, james.dennett, gromer
Reviewed By: rsmith
Subscribers: jdennett, Quuxplusone, lebedev.ri, cfe-commits
Differential Revision: https://reviews.llvm.org/D56731
llvm-svn: 351484
Set address spaces of 'this' param correctly for implicit special
class members.
This also changes initialization conversion sequence to separate
address space conversion from other qualifiers in case of binding
reference to a temporary. In this case address space conversion
should happen after the binding (unlike for other quals). This is
needed to materialize it correctly in the alloca address space.
Initial patch by Mikael Nilssoni!
Differential Revision: https://reviews.llvm.org/D56066
llvm-svn: 351053
Store the arguments of CXXConstructExpr in a trailing array. This is very
similar to the CallExpr case in D55771, with the exception that there is
only one derived class (CXXTemporaryObjectExpr) and that we compute the
offset to the trailing array instead of storing it.
This saves one pointer per CXXConstructExpr and CXXTemporaryObjectExpr.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D56022
llvm-svn: 350003
This reverts commit 46efdf2ccc2a80aefebf8433dbf9c7c959f6e629.
Richard Smith commented just after I submitted this that this is the
wrong solution. Reverting so that I can fix differently.
llvm-svn: 349206
Core issue 1013 suggests that having an uninitialied std::nullptr_t be
UB is a bit foolish, since there is only a single valid value. This DR
reports that DR616 fixes it, which does so by making lvalue-to-rvalue
conversions from nullptr_t be equal to nullptr.
However, just implementing that results in warnings/etc in many places.
In order to fix all situations where nullptr_t would seem uninitialized,
this patch instead (as an otherwise transparent extension) default
initializes uninitialized VarDecls of nullptr_t.
Differential Revision: https://reviews.llvm.org/D53713
Change-Id: I84d72a9290054fa55341e8cbdac43c8e7f25b885
llvm-svn: 349201
This patch adds the noderef attribute in clang and checks for dereferences of
types that have this attribute. This attribute is currently used by sparse and
would like to be ported to clang.
Differential Revision: https://reviews.llvm.org/D49511
llvm-svn: 348442
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
If PerformConstructorInitialization of a direct initializer list constructor is
called while instantiating a template, it has brace locations in its BraceLoc
arguments but not in the Kind argument.
This reverts the hunk https://reviews.llvm.org/D41921#inline-468844.
Patch by Orivej Desh!
Differential Revision: https://reviews.llvm.org/D53231
llvm-svn: 347261
Added references to the addr spaces deduction and enabled
CL2.0 features (program scope variables and storage class
qualifiers) to work in C++ mode too.
Fixed several address space conversion issues in CodeGen
for references.
Differential Revision: https://reviews.llvm.org/D53764
llvm-svn: 347059
This unfortunately results in a substantial breaking change when
switching to C++20, but it's not yet clear what / how much we should
do about that. We may want to add a compatibility conversion from
u8 string literals to const char*, similar to how C++98 provided a
compatibility conversion from string literals to non-const char*,
but that's not handled by this patch.
The feature can be disabled in C++20 mode with -fno-char8_t.
llvm-svn: 346892
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
This patch breaks Index/opencl-types.cl LIT test:
Script:
--
: 'RUN: at line 1'; stage1/bin/c-index-test -test-print-type llvm/tools/clang/test/Index/opencl-types.cl -cl-std=CL2.0 | stage1/bin/FileCheck llvm/tools/clang/test/Index/opencl-types.cl
--
Command Output (stderr):
--
llvm/tools/clang/test/Index/opencl-types.cl:3:26: warning: unsupported OpenCL extension 'cl_khr_fp16' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:4:26: warning: unsupported OpenCL extension 'cl_khr_fp64' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:8:9: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:11:8: error: declaring variable of type 'half' is not allowed
llvm/tools/clang/test/Index/opencl-types.cl:15:3: error: use of type 'double' requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:16:3: error: use of type 'double4' (vector of 4 'double' values) requires cl_khr_fp64 extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:26:26: warning: unsupported OpenCL extension 'cl_khr_gl_msaa_sharing' - ignoring [-Wignored-pragmas]
llvm/tools/clang/test/Index/opencl-types.cl:35:44: error: use of type '__read_only image2d_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:36:49: error: use of type '__read_only image2d_array_msaa_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:37:49: error: use of type '__read_only image2d_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm/tools/clang/test/Index/opencl-types.cl:38:54: error: use of type '__read_only image2d_array_msaa_depth_t' requires cl_khr_gl_msaa_sharing extension to be enabled
llvm-svn: 346338
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
Rather, they are subexpressions of the enclosing lambda-expression, and
any temporaries in them are destroyed at the end of that
full-expression, or when the corresponding lambda-expression is
destroyed if they are lifetime-extended.
llvm-svn: 344801
accessible from the context where aggregate initialization occurs.
rdar://problem/38168772
Differential Revision: https://reviews.llvm.org/D45898
llvm-svn: 341629
Specifically, AttributedType now tracks a regular attr::Kind rather than
having its own parallel Kind enumeration, and AttributedTypeLoc now
holds an Attr* instead of holding an ad-hoc collection of Attr fields.
Differential Revision: https://reviews.llvm.org/D50526
This reinstates r339623, reverted in r339638, with a fix to not fail
template instantiation if we instantiate a QualType with no associated
type source information and we encounter an AttributedType.
llvm-svn: 340215
Summary:
There isn't anything inherently wrong with returning a label from a
statement expression. In practice, the Linux kernel uses this pattern to
materialize PCs.
Fixes PR38569
Reviewers: niravd, rsmith, nickdesaulniers
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D50805
llvm-svn: 340101
This breaks compiling atlwin.h in Chromium. I'm sure the code is invalid
in some way, but we put a lot of work into accepting it, and I'm sure
rejecting it was not an intended consequence of this refactoring. :)
llvm-svn: 339638
Specifically, AttributedType now tracks a regular attr::Kind rather than
having its own parallel Kind enumeration, and AttributedTypeLoc now
holds an Attr* instead of holding an ad-hoc collection of Attr fields.
Differential Revision: https://reviews.llvm.org/D50526
llvm-svn: 339623
This is the same fix as in r338478, for another occurrance of the
same pattern from r338464.
See gcc.gnu.org/PR86769 for details of the bug.
llvm-svn: 338749
This patch adds support for a new attribute, [[clang::lifetimebound]], that
indicates that the lifetime of a function result is related to one of the
function arguments. When walking an initializer to make sure that the lifetime
of the initial value is at least as long as the lifetime of the initialized
object, we step through parameters (including the implicit object parameter of
a non-static member function) that are marked with this attribute.
There's nowhere to write an attribute on the implicit object parameter, so in
lieu of that, it may be applied to a function type (where it appears
immediately after the cv-qualifiers and ref-qualifier, which is as close to a
declaration of the implicit object parameter as we have). I'm currently
modeling this in the AST as the attribute appertaining to the function type.
Differential Revision: https://reviews.llvm.org/D49922
llvm-svn: 338464
in some member function calls.
Specifically, when calling a conversion function, we would fail to
create the AST node representing materialization of the class object.
llvm-svn: 338135
from that for a return value.
No functionality change intended: I don't believe any of the diagnostics
affected by this patch are reachable when initializing the result of
statement expression.
llvm-svn: 337728
This reinstates r337627, reverted in r337671, with a fix to correctly
handle the lvalueness of array subscript expressions on pointers.
llvm-svn: 337726
This reverts commit r337627.
After the change, clang started producing invalid warning on the following code:
struct foo {
foo(char *x) : x_(&x[10]) {}
private:
char *x_;
};
1.cpp:2:21: warning: initializing pointer member 'x_' with the stack address of parameter 'x' [-Wdangling-field]
llvm-svn: 337671
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
This reinstates r337226, reverted in r337255, with a fix for the
InitializedEntity alignment problem that was breaking ARM buildbots.
llvm-svn: 337329
This change breaks on ARM because pointers to clang::InitializedEntity are only
4 byte aligned and do not have 3 bits to store values. A possible solution
would be to change the fields in clang::InitializedEntity to enforce a bigger
alignment requirement.
The error message is
llvm/include/llvm/ADT/PointerIntPair.h:132:3: error: static_assert failed "PointerIntPair with integer size too large for pointer"
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
include/llvm/ADT/PointerIntPair.h:73:13: note: in instantiation of template class 'llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> >' requested here
Value = Info::updateInt(Info::updatePointer(0, PtrVal),
llvm/include/llvm/ADT/PointerIntPair.h:51:5: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::setPointerAndInt' requested here
setPointerAndInt(PtrVal, IntVal);
^
llvm/tools/clang/lib/Sema/SemaInit.cpp:6237:12: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::PointerIntPair' requested here
return {Entity, LK_Extended};
Full log here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-global-isel/builds/1330http://lab.llvm.org:8011/builders/clang-cmake-armv7-full/builds/1394
llvm-svn: 337255
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
llvm-svn: 337226
Diagnostics for narrowing conversions in initializer lists are currently
DefaultIgnored in Microsoft mode. But MSVC 2015 did add warnings about
narrowing conversions (C2397), so clang-cl can remove its special case code if
MSCompatibilityVersion is new enough.
(In MSVC, C2397 is just a warning and in clang it's default-mapped to an error,
but it can be remapped, and disabled with -Wno-c++11-narrowing, so that should
be fine.)
Fixes PR37314.
https://reviews.llvm.org/D48296
llvm-svn: 335082
It caused asserts, see PR37560.
> Use zeroinitializer for (trailing zero portion of) large array initializers
> more reliably.
>
> Clang has two different ways it emits array constants (from InitListExprs and
> from APValues), and both had some ability to emit zeroinitializer, but neither
> was able to catch all cases where we could use zeroinitializer reliably. In
> particular, emitting from an APValue would fail to notice if all the explicit
> array elements happened to be zero. In addition, for large arrays where only an
> initial portion has an explicit initializer, we would emit the complete
> initializer (which could be huge) rather than emitting only the non-zero
> portion. With this change, when the element would have a suffix of more than 8
> zero elements, we emit the array constant as a packed struct of its initial
> portion followed by a zeroinitializer constant for the trailing zero portion.
>
> In passing, I found a bug where SemaInit would sometimes walk the entire array
> when checking an initializer that only covers the first few elements; that's
> fixed here to unblock testing of the rest.
>
> Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333067
more reliably.
Clang has two different ways it emits array constants (from InitListExprs and
from APValues), and both had some ability to emit zeroinitializer, but neither
was able to catch all cases where we could use zeroinitializer reliably. In
particular, emitting from an APValue would fail to notice if all the explicit
array elements happened to be zero. In addition, for large arrays where only an
initial portion has an explicit initializer, we would emit the complete
initializer (which could be huge) rather than emitting only the non-zero
portion. With this change, when the element would have a suffix of more than 8
zero elements, we emit the array constant as a packed struct of its initial
portion followed by a zeroinitializer constant for the trailing zero portion.
In passing, I found a bug where SemaInit would sometimes walk the entire array
when checking an initializer that only covers the first few elements; that's
fixed here to unblock testing of the rest.
Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333044
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
llvm-svn: 331244
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
llvm-svn: 331155
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
When we synthesize an implicit inner initializer list when analyzing an outer
initializer list, we add it to the outer list immediately, and then fill in the
inner list. This gives the outer list no chance to update its *-dependence bits
with those of the completed inner list. To fix this, re-add the inner list to
the outer list once it's completed.
Note that we do not recompute the *-dependence bits from scratch when we
complete an outer list; this would give the wrong result for the case where a
designated initializer overwrites a dependent initializer with a non-dependent
one. The resulting list in that case should still be dependent, even though all
traces of the dependence were removed from the semantic form.
llvm-svn: 324537
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
In C++, such initialization of std::array<T, N> types is guaranteed to work by
the standard, is completely idiomatic, and the "suggested" alternative from
Clang was technically invalid.
llvm-svn: 314838
When selecting constructors for initializing an object of type T from a single
expression of class type U, also consider conversion functions of U that
convert to T (rather than modeling such conversions as calling a conversion
function and then calling a constructor).
This approach is proposed as the resolution for the defect, and is also already
implemented by GCC.
llvm-svn: 314231
This commit fixes a bug that's tracked by PR 10758 and duplicates like PR 30343.
The bug causes clang to crash with a stack overflow while recursing infinitely
trying to perform copy-initialization on a type without a copy constructor but
with a constructor that accepts another type that can be constructed using the
original type.
The commit fixes this bug by detecting the recursive behavior and failing
correctly with an appropriate error message. It also tries to provide a
meaningful diagnostic note about the constructor which leads to this behavior.
rdar://28483944
Differential Revision: https://reviews.llvm.org/D25051
llvm-svn: 303156
lambda capture used by the created block
The commit r288866 introduced guaranteed copy elision to C++ 17. This
unfortunately broke the lambda to block conversion in C++17 (the compiler
crashes when performing IRGen). This commit fixes the conversion by avoiding
copy elision for the capture that captures the lambda that's used in the block
created by the lambda to block conversion process.
rdar://31385153
Differential Revision: https://reviews.llvm.org/D31669
llvm-svn: 299646
Summary:
I saw the same changes in the following review: https://reviews.llvm.org/D17438
I don't know in that way I could determine that atomic variable was initialized by macro ATOMIC_VAR_INIT. Anyway I added check that atomic variables can be initialize only in global scope.
I think that we can discuss this change.
Reviewers: Anastasia, cfe-commits
Reviewed By: Anastasia
Subscribers: bader, yaxunl
Differential Revision: https://reviews.llvm.org/D30643
llvm-svn: 299537
Summary: After examining the remaining uses of LangOptions.ObjCAutoRefCount, found a some additional places to also check for ObjCWeak not covered by previous test cases. Added a test file to verify all the code paths that were changed.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31007
llvm-svn: 299015
This change fixes a crash on initialization of a reference from ({}) during
template instantiation and incidentally improves diagnostics.
This reverts a prior attempt to handle this in r286721. Instead, we teach the
initialization code that initialization cannot be performed if a source type
is required and the initializer is an initializer list (which is not an
expression and does not have a type), and likewise for function-style cast
expressions.
llvm-svn: 298676
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
llvm-svn: 295686
After r264564, we allowed direct-list-initialization of an enum from an
integral value in C++1z mode, so long as that value can convert to the
enum's underlying type.
In this kind of initialization, we need a lvalue-to-rvalue conversion
for the initializer value if it is not a rvalue. This lets us accept the
following code:
enum class A : unsigned {};
A foo(unsigned x) { return A{x}; }
Differential Revision: https://reviews.llvm.org/D29723
llvm-svn: 295266
such guides below explicit ones, and ensure that references to the class's
template parameters are not treated as forwarding references.
We make a few tweaks to the wording in the current standard:
1) The constructor parameter list is copied faithfully to the deduction guide,
without losing default arguments or a varargs ellipsis (which the standard
wording loses by omission).
2) If the class template declares no constructors, we add a T() -> T<...> guide
(which will only ever work if T has default arguments for all non-pack
template parameters).
3) If the class template declares nothing that looks like a copy or move
constructor, we add a T(T<...>) -> T<...> guide.
#2 and #3 follow from the "pretend we had a class type with these constructors"
philosophy for deduction guides.
llvm-svn: 295007
Contrary to the comment, DeclContext intends to guarantee that the lookup
results for a particular name will be stable across non-AST-mutating
operations, so a copy here should not be necessary. Further, if a copy *is*
necessary, the other four instances of this pattern within this file would also
be wrong, and we have no evidence of any problems with them; if this change
unearths problems, we should fix all the instances of this pattern.
llvm-svn: 293740
CheckDesignatedInitializer wasn't taking into account the base classes
when computing the index for the field in the derived class, which
caused the test case to crash during IRGen because of a malformed AST.
rdar://problem/26795040
Differential Revision: https://reviews.llvm.org/D28705
llvm-svn: 292245
This implements something like the current direction of DR1581: we use a narrow
syntactic check to determine the set of places where a constant expression
could be evaluated, and only instantiate a constexpr function or variable if
it's referenced in one of those contexts, or is odr-used.
It's not yet clear whether this is the right set of syntactic locations; we
currently consider all contexts within templates that would result in odr-uses
after instantiation, and contexts within list-initialization (narrowing
conversions take another victim...), as requiring instantiation. We could in
principle restrict the former cases more (only const integral / reference
variable initializers, and contexts in which a constant expression is required,
perhaps). However, this is sufficient to allow us to accept libstdc++ code,
which relies on GCC's behavior (which appears to be somewhat similar to this
approach).
llvm-svn: 291318
argument even if the expression is value-dependent (we need to suppress the
final portion of the narrowing check, but the rest of the checking can still be
done eagerly).
This affects template template argument validity and partial ordering under
p0522r0.
llvm-svn: 290276
effect they would have in C++11. In particular, they do not prevent
value-initialization from performing zero-initialization, nor do they prevent a
struct from being an aggregate.
llvm-svn: 290229
This reverts commit r290171. It triggers a bunch of warnings, because
the new enumerator isn't handled in all switches. We want a warning-free
build.
Replied on the commit with more details.
llvm-svn: 290173
Summary: Enabling the compression of CLK_NULL_QUEUE to variable of type queue_t.
Reviewers: Anastasia
Subscribers: cfe-commits, yaxunl, bader
Differential Revision: https://reviews.llvm.org/D27569
llvm-svn: 290171
constructs that can do so into the initialization code. This fixes a number
of different cases in which we used to fail to check for abstract types.
Thanks to Tim Shen for inspiring the weird code that uncovered this!
llvm-svn: 289753
copy constructors of classes with array members, instead using
ArrayInitLoopExpr to represent the initialization loop.
This exposed a bug in the static analyzer where it was unable to differentiate
between zero-initialized and unknown array values, which has also been fixed
here.
llvm-svn: 289618
initialization of each array element:
* ArrayInitLoopExpr is a prvalue of array type with two subexpressions:
a common expression (an OpaqueValueExpr) that represents the up-front
computation of the source of the initialization, and a subexpression
representing a per-element initializer
* ArrayInitIndexExpr is a prvalue of type size_t representing the current
position in the loop
This will be used to replace the creation of explicit index variables in lambda
capture of arrays and copy/move construction of classes with array elements,
and also C++17 structured bindings of arrays by value (which inexplicably allow
copying an array by value, unlike all of C++'s other array declarations).
No uses of these nodes are introduced by this change, however.
llvm-svn: 289413