This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
Drop non-conformant extension pragma implementation as
it does not properly disable anything and therefore
enabling non-disabled logic has no meaning.
This simplifies clang code and user interface to the extension
functionality. With this patch extension pragma 'begin'/'end'
and 'enable'/'disable' are only accepted for backward
compatibility and no longer have any default behavior.
Differential Revision: https://reviews.llvm.org/D101043
As of MSVC 19.28 (2019 Update 8), integral conversion is no longer preferred over floating-to-integral, and so MSVC is more standard conformant and will generate a compiler error on ambiguous call.
Cf. https://godbolt.org/z/E8xsdqKsb.
Initially found during the review of D99641.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99663
See https://bugs.llvm.org/show_bug.cgi?id=42154.
GCC's __attribute__((align)) can reduce the alignment of a type when applied to
a typedef. However, functions which take a pointer or reference to the
original type are compiled assuming the original alignment. Therefore when any
such function is passed an object of the new, less-aligned type, an alignment
fault can occur. In particular, this applies to the constructor, which is
defined for the original type and called for the less-aligned object.
This change adds a warning whenever an pointer or reference to an object is
passed to a function that was defined for a more-aligned type.
The calls to ASTContext::getTypeAlignInChars seem change the order in which
record layouts are evaluated, which caused changes to the output of
-fdump-record-layouts. As such some tests needed to be updated:
* Use CHECK-LABEL rather than counting the number of "Dumping AST Record
Layout" headers.
* Check for end of line in labels, so that struct B1 doesn't match struct B
etc.
* Add --strict-whitespace, since the whitespace shows meaningful structure.
* The order in which record layouts are printed has changed in some cases.
* clang-format for regions changed
Differential Revision: https://reviews.llvm.org/D97187
Previously, -fshow-overloads=best always showed 4 candidates. The
problem is, when this isn't enough, you're kind of up a creek; the only
option available is to recompile with different flags. This can be
quite expensive!
With this change, we try to strike a compromise. The *first* error with
more than 4 candidates will show up to 32 candidates. All further
errors continue to show only 4 candidates.
The hope is that this way, users will have *some chance* of making
forward progress, without facing unbounded amounts of error spam.
Differential Revision: https://reviews.llvm.org/D95754
Combined with 'da98651 - Revert "DR2064:
decltype(E) is only a dependent', this change (5a391d3) caused verifier
errors when building Chromium. See https://crbug.com/1168494#c1 for a
reproducer.
Additionally it reverts changes that were dependent on this one, see
below.
> Following up on PR48517, fix handling of template arguments that refer
> to dependent declarations.
>
> Treat an id-expression that names a local variable in a templated
> function as being instantiation-dependent.
>
> This addresses a language defect whereby a reference to a dependent
> declaration can be formed without any construct being value-dependent.
> Fixing that through value-dependence turns out to be problematic, so
> instead this patch takes the approach (proposed on the core reflector)
> of allowing the use of pointers or references to (but not values of)
> dependent declarations inside value-dependent expressions, and instead
> treating template arguments as dependent if they evaluate to a constant
> involving such dependent declarations.
>
> This ends up affecting a bunch of OpenMP tests, due to OpenMP
> imprecisely handling instantiation-dependent constructs, bailing out
> early instead of processing dependent constructs to the extent possible
> when handling the template.
>
> Previously committed as 8c1f2d15b8, and
> reverted because a dependency commit was reverted.
This reverts commit 5a391d38ac.
It also restores clang/test/SemaCXX/coroutines.cpp to its state before
da986511fb.
Revert "[c++20] P1907R1: Support for generalized non-type template arguments of scalar type."
> Previously committed as 9e08e51a20, and
> reverted because a dependency commit was reverted. This incorporates the
> following follow-on commits that were also reverted:
>
> 7e84aa1b81 by Simon Pilgrim
> ed13d8c667 by me
> 95c7b6cadb by Sam McCall
> 430d5d8429 by Dave Zarzycki
This reverts commit 4b574008ae.
Revert "[msabi] Mangle a template argument referring to array-to-pointer decay"
> [msabi] Mangle a template argument referring to array-to-pointer decay
> applied to an array the same as the array itself.
>
> This follows MS ABI, and corrects a regression from the implementation
> of generalized non-type template parameters, where we "forgot" how to
> mangle this case.
This reverts commit 18e093faf7.
Previously committed as 9e08e51a20, and
reverted because a dependency commit was reverted. This incorporates the
following follow-on commits that were also reverted:
7e84aa1b81 by Simon Pilgrim
ed13d8c667 by me
95c7b6cadb by Sam McCall
430d5d8429 by Dave Zarzycki
to dependent declarations.
Treat an id-expression that names a local variable in a templated
function as being instantiation-dependent.
This addresses a language defect whereby a reference to a dependent
declaration can be formed without any construct being value-dependent.
Fixing that through value-dependence turns out to be problematic, so
instead this patch takes the approach (proposed on the core reflector)
of allowing the use of pointers or references to (but not values of)
dependent declarations inside value-dependent expressions, and instead
treating template arguments as dependent if they evaluate to a constant
involving such dependent declarations.
This ends up affecting a bunch of OpenMP tests, due to OpenMP
imprecisely handling instantiation-dependent constructs, bailing out
early instead of processing dependent constructs to the extent possible
when handling the template.
Previously committed as 8c1f2d15b8, and
reverted because a dependency commit was reverted.
to dependent declarations.
Treat an id-expression that names a local variable in a templated
function as being instantiation-dependent.
This addresses a language defect whereby a reference to a dependent
declaration can be formed without any construct being value-dependent.
Fixing that through value-dependence turns out to be problematic, so
instead this patch takes the approach (proposed on the core reflector)
of allowing the use of pointers or references to (but not values of)
dependent declarations inside value-dependent expressions, and instead
treating template arguments as dependent if they evaluate to a constant
involving such dependent declarations.
This ends up affecting a bunch of OpenMP tests, due to OpenMP
imprecisely handling instantiation-dependent constructs, bailing out
early instead of processing dependent constructs to the extent possible
when handling the template.
Emit error for use of 128-bit integer inside device code had been
already implemented in https://reviews.llvm.org/D74387. However,
the error is not emitted for SPIR64, because for SPIR64, hasInt128Type
return true.
hasInt128Type: is also used to control generation of certain 128-bit
predefined macros, initializer predefined 128-bit integer types and
build 128-bit ArithmeticTypes. Except predefined macros, only the
device target is considered, since error only emit when 128-bit
integer is used inside device code, the host target (auxtarget) also
needs to be considered.
The change address:
1. (SPIR.h) Correct hasInt128Type() for SPIR targets.
2. Sema.cpp and SemaOverload.cpp: Add additional check to consider host
target(auxtarget) when call to hasInt128Type. So that __int128_t
and __int128() are allowed to avoid error when they used outside
device code.
3. SemaType.cpp: add check for SYCLIsDevice to delay the error message.
The error will be emitted if the use of 128-bit integer in the device
code.
Reviewed By: Johannes Doerfert and Aaron Ballman
Differential Revision: https://reviews.llvm.org/D92439
I have a patch that adds another group of candidate types to
BuiltinCandidateTypeSet. Currently two styles are in use: the older
begin/end pairs and the newer iterator_range approach. I think the
group of candidates that I want to add should use iterator ranges,
but I'd also like to consolidate the handling of the new candidates
with some existing code that uses begin/end pairs. This patch therefore
converts the begin/end pairs to iterator ranges as a first step.
No functional change intended.
Differential Revision: https://reviews.llvm.org/D92222
Fix bogus diagnostics that would get confused and think a "no viable
fuctions" case was an "undeclared identifiers" case, resulting in an
incorrect diagnostic preceding the correct one. Use overload resolution
to determine which function we should select when we can find call
candidates from a dependent base class. Make the diagnostics for a call
that could call a function from a dependent base class more specific,
and use a different diagnostic message for the case where the call
target is instead declared later in the same class. Plus some minor
diagnostic wording improvements.
This patch implements correct hostness based overloading resolution
in isBetterOverloadCandidate.
Based on hostness, if one candidate is emittable whereas the other
candidate is not emittable, the emittable candidate is better.
If both candidates are emittable, or neither is emittable based on hostness, then
other rules should be used to determine which is better. This is because
hostness based overloading resolution is mostly for determining
viability of a function. If two functions are both viable, other factors
should take precedence in preference.
If other rules cannot determine which is better, CUDA preference will be
used again to determine which is better.
However, correct hostness based overloading resolution
requires overloading resolution diagnostics to be deferred,
which is not on by default. The rationale is that deferring
overloading resolution diagnostics may hide overloading reslolutions
issues in header files.
An option -fgpu-exclude-wrong-side-overloads is added, which is off by
default.
When -fgpu-exclude-wrong-side-overloads is off, keep the original behavior,
that is, exclude wrong side overloads only if there are same side overloads.
This may result in incorrect overloading resolution when there are no
same side candates, but is sufficient for most CUDA/HIP applications.
When -fgpu-exclude-wrong-side-overloads is on, enable deferring
overloading resolution diagnostics and enable correct hostness
based overloading resolution, i.e., always exclude wrong side overloads.
Differential Revision: https://reviews.llvm.org/D80450
Lax vector conversions was behaving incorrectly for implicit casts
between scalable and fixed-length vector types. For example, this:
#include <arm_sve.h>
#define N __ARM_FEATURE_SVE_BITS
#define FIXED_ATTR __attribute__((arm_sve_vector_bits(N)))
typedef svfloat32_t fixed_float32_t FIXED_ATTR;
void allowed_depending() {
fixed_float32_t fs32;
svfloat64_t s64;
fs32 = s64;
}
... would fail because the vectors have differing lane sizes. This patch
implements the correct behaviour for
-flax-vector-conversions={none,all,integer}. Specifically:
- -flax-vector-conversions=none prevents all lax vector conversions
between scalable and fixed-sized vectors.
- -flax-vector-conversions=integer allows lax vector conversions between
scalable and fixed-size vectors whose element types are integers.
- -flax-vector-conversions=all allows all lax vector conversions between
scalable and fixed-size vectors (including those with floating point
element types).
The implicit conversions are implemented as bitcasts.
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D91067
In the wake of https://reviews.llvm.org/D89559, we discovered that a
couple of tests (the ones modified below to have additional triple
versions) would fail on Win32, for 1 of two reasons. We seem to not
have a win32 buildbot anymore, so the triple is to make sure this
doesn't get broken in the future.
First, two of the three 'note-candidate' functions weren't appropriately
skipping the remaining conversion functions.
Second, in 1 situation (note surrogate candidates) we actually print the
type of the conversion operator. The two tests that ran into that
needed updating to make sure it printed the proper one in the win32
case.
When an overloaded member function has a ref-qualifier, like:
class X {
void f() &&;
void f(int) &;
};
we would print strange notes when the ref-qualifier doesn't fit the value
category:
X x;
x.f();
X().f(0);
would both print a note "no known conversion from 'X' to 'X' for object
argument" on their relevant overload instead of pointing out the
mismatch in value category.
At first I thought the solution is easy: just use the FailureKind member
of the BadConversionSequence struct. But it turns out that we weren't
properly setting this for function arguments. So I went through
TryReferenceInit to make sure we're doing that right, and found a number
of notes in the existing tests that improved as well.
Fixes PR47791.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D90123
As mentioned in the defect, the lambda static invoker does not follow
the calling convention of the lambda itself, which seems wrong. This
patch ensures that the calling convention of operator() is passed onto
the invoker and conversion-operator type.
This is accomplished by extracting the calling-convention determination
code out into a separate function in order to better reflect the 'thiscall'
work, as well as somewhat better support the future implementation of
https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623
For any target (basically just win32) that has a different free and
static function calling convention, this generates BOTH alternatives.
This required some work to get the Windows mangler to work correctly for
this, as well as some tie-breaking for the unary operators.
Differential Revision: https://reviews.llvm.org/D89559
Because of typo-correction, the AST can be transformed, and the transformed
AST is marginally useful for diagnostics purpose, the following
diagnostics usually do harm than good (easily cause confusions).
Given the following code:
```
void abcc();
void test() {
if (abc());
// diagnostic 1 (for the typo-correction): the typo is correct to `abcc()`, so the code is treate as `if (abcc())` in AST perspective;
// diagnostic 2 (for mismatch type): we perform an type-analysis on `if`, discover the type is not match
}
```
The secondary diagnostic "convertable to bool" is likely bogus to users.
The idea is to use RecoveryExpr (clang's dependent mechanism) to preserve the
recovery behavior but suppress all follow-up diagnostics.
Differential Revision: https://reviews.llvm.org/D89946
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
The function `TryListConversion` didn't properly validate the following
part of the standard:
Otherwise, if the parameter type is a character array [... ]
and the initializer list has a single element that is an
appropriately-typed string literal (8.5.2 [dcl.init.string]), the
implicit conversion sequence is the identity conversion.
This caused the following call to `f()` to be ambiguous.
void f(int(&&)[1]);
void f(unsigned(&&)[1]);
void g(unsigned i) {
f({i});
}
This issue only occurs when the initializer list had one element.
Differential Revision: https://reviews.llvm.org/D87561
In CUDA/HIP a function may become implicit host device function by
pragma or constexpr. A host device function is checked in both
host and device compilation. However it may be emitted only
on host or device side, therefore the diagnostics should be
deferred until it is known to be emitted.
Currently clang is only able to defer certain diagnostics. This causes
false alarms and limits the usefulness of host device functions.
This patch lets clang defer all overloading resolution diagnostics for host device functions.
An option -fgpu-defer-diag is added to control this behavior. By default
it is off.
It is NFC for other languages.
Differential Revision: https://reviews.llvm.org/D84364
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
Previously we had two overloads where the only real difference beyond
parameter order was whether a reference parameter is const, where one
overload treated the reference parameter as an in-parameter and the
other treated it as an out-parameter!
This patch implements the semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
The semantics were already implemented by D83551, although the
implementation approach has since changed to represent VLSTs as
VectorType in the AST and fixed-length vectors in the IR everywhere
except in function args/returns. This is described in the prototype
patch D85128 demonstrating the new approach.
The semantic changes added in D83551 are changed since the
AttributedType is replaced by VectorType in the AST. Minimal changes
were necessary in the previous patch as the canonical type for both VLA
and VLS was the same (i.e. sizeless), except in constructs such as
globals and structs where sizeless types are unsupported. This patch
reverts the changes that permitted VLS types that were represented as
sizeless types in such circumstances, and adds support for implicit
casting between VLA <-> VLS types as described in section 3.7.3.2 of the
ACLE.
Since the SVE builtin types for bool and uint8 are both represented as
BuiltinType::UChar in VLSTs, two new vector kinds are implemented to
distinguish predicate and data vectors.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85736
for array bounds, not "integer constant" rules.
For an array bound of class type, this causes us to perform an implicit
conversion to size_t, instead of looking for a unique conversion to
integral or unscoped enumeration type. This affects which cases are
valid when a class has multiple implicit conversion functions to
different types.
If a functionDecl is invalid (e.g. return type cannot be formed), int is
use as he fallback type, which may lead to some bogus diagnostics.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D85714
Background:
-----------
There are two related argument types which can be sent into a diagnostic to
display the name of an entity: DeclarationName (ak_declarationname) or
NamedDecl* (ak_nameddecl) (there is also ak_identifierinfo for
IdentifierInfo*, but we are not concerned with it here).
A DeclarationName in a diagnostic will just be streamed to the output,
which will directly result in a call to DeclarationName::print.
A NamedDecl* in a diagnostic will also ultimately result in a call to
DeclarationName::print, but with two customisation points along the way:
The first customisation point is NamedDecl::getNameForDiagnostic which is
overloaded by FunctionDecl, ClassTemplateSpecializationDecl and
VarTemplateSpecializationDecl to print the template arguments, if any.
The second customisation point is NamedDecl::printName. By default it just
streams the stored DeclarationName into the output but it can be customised
to provide a user-friendly name for an entity. It is currently overloaded by
DecompositionDecl and MSGuidDecl.
What this patch does:
---------------------
For many diagnostics a DeclarationName is used instead of the NamedDecl*.
This bypasses the two customisation points mentioned above. This patches fix
this for diagnostics in Sema.cpp, SemaCast.cpp, SemaChecking.cpp, SemaDecl.cpp,
SemaDeclAttr.cpp, SemaDecl.cpp, SemaOverload.cpp and SemaStmt.cpp.
I have only modified diagnostics where I could construct a test-case which
demonstrates that the change is appropriate (either with this patch or the next
one).
Reviewed By: erichkeane, aaron.ballman
Differential Revision: https://reviews.llvm.org/D84656
This change allow a CallExpr to have optional FPOptionsOverride object,
stored in trailing storage. The implementaion is made similar to the way
used in BinaryOperator.
Differential Revision: https://reviews.llvm.org/D84343
Reapply 49e5f603d4
which had been reverted in c94332919b.
Originally reverted because I hadn't updated it in quite a while when I
got around to committing it, so there were a bunch of missing changes to
new code since I'd written the patch.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
There is a version that just tests (also called
isIntegerConstantExpression) & whereas this version is specifically used
when the value is of interest (a few call sites were actually refactored
to calling the test-only version) so let's make the API look more like
it.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
RecoveryExpr was always lvalue, but it is wrong if we use it to model
broken function calls, function call expression has more compliated rules:
- a call to a function whose return type is an lvalue reference yields an lvalue;
- a call to a function whose return type is an rvalue reference yields an xvalue;
- a call to a function whose return type is nonreference type yields a prvalue;
This patch makes the recovery-expr align with the function call if it is
modeled a broken call.
Differential revision: https://reviews.llvm.org/D83201
sequence on a glvalue expression.
If the sequence is supposed to perform an lvalue-to-rvalue conversion,
then one will be specified as the first conversion in the sequence.
Otherwise, one should not be invented.
This reverts commit defd43a5b3.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed6.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit 263390d4f5.
This can still cause bogus errors:
eigen3/Eigen/src/Core/CoreEvaluators.h:94:38: error: call to implicitly-deleted copy constructor of 'unary_evaluator<Eigen::Inverse<Eigen::Matrix<double, 4, 4, 0, 4, 4>>>'
thrust/system/detail/generic/for_each.h:49:3: error: implicit instantiation of undefined template
'thrust::detail::STATIC_ASSERTION_FAILURE<false>'
This patch implements the * binary operator for values of
MatrixType. It adds support for matrix * matrix, scalar * matrix and
matrix * scalar.
For the matrix, matrix case, the number of columns of the first operand
must match the number of rows of the second. For the scalar,matrix variants,
the element type of the matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76794
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
recommit e03394c6a6 with fix
When implicit HD function calls a function in device compilation,
if one candidate is an implicit HD function, current resolution rule is:
D wins over HD and H
HD and H are equal
this caused regression when there is an otherwise worse D candidate
This patch changes that to
D, HD and H are all equal
The rationale is that we already know for host compilation there is already
a valid candidate in HD and H candidates that will not cause error. Allowing
HD and H gives us a fall back candidate that will not cause error. If D wins,
that means D has to be a better match otherwise, therefore D should also
be a valid candidate that will not cause error. In this way, we can guarantee
no regression.
Differential Revision: https://reviews.llvm.org/D80450
We can simplify the code a bit by using iterator_range instead of
plain iterators. Matrix type support here (added in 6f6e91d193)
already uses an iterator_range.
Reviewers: rjmccall, arphaman, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D81138
parameters with default arguments.
Directly follow the wording by relaxing the AST invariant that all
parameters after one with a default arguemnt also have default
arguments, and removing the diagnostic on missing default arguments
on a pack-expanded parameter following a parameter with a default
argument.
Testing also revealed that we need to special-case explicit
specializations of templates with a pack following a parameter with a
default argument, as such explicit specializations are otherwise
impossible to write. The standard wording doesn't address this case; a
issue has been filed.
This exposed a bug where we would briefly consider a parameter to have
no default argument while we parse a delay-parsed default argument for
that parameter, which is also fixed.
Partially incorporates a patch by Raul Tambre.
This patch implements the + and - binary operators for values of
MatrixType. It adds support for matrix +/- matrix, scalar +/- matrix and
matrix +/- scalar.
For the matrix, matrix case, the types must initially be structurally
equivalent. For the scalar,matrix variants, the element type of the
matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76793
We didn't properly build default argument expressions previously -- we
failed to build the wrapper CXXDefaultArgExpr node, which meant that
std::source_location misbehaved, and we didn't perform default argument
instantiation when necessary, which meant that dependent default
arguments in function templates didn't work at all.
recommit c77a4078e0 with fix
https://reviews.llvm.org/D77954 caused regressions due to diagnostics in implicit
host device functions.
For now, it seems the most feasible workaround is to treat implicit host device function and explicit host
device function differently. Basically in device compilation for implicit host device functions, keep the
old behavior, i.e. give host device candidates and wrong-sided candidates equal preference. For explicit
host device functions, favor host device candidates against wrong-sided candidates.
The rationale is that explicit host device functions are blessed by the user to be valid host device functions,
that is, they should not cause diagnostics in both host and device compilation. If diagnostics occur, user is
able to fix them. However, there is no guarantee that implicit host device function can be compiled in
device compilation, therefore we need to preserve its overloading resolution in device compilation.
Differential Revision: https://reviews.llvm.org/D79526
RecoveryExprs are modeled as dependent type to prevent bogus diagnostics
and crashes in clang.
This patch allows to preseve the type for broken calls when the
RecoveryEprs have a known type, e.g. a broken non-overloaded call, a
overloaded call when the all candidates have the same return type, so
that more features (code completion still work on "take2args(x).^") still
work.
However, adding the type is risky, which may result in more clang code being
affected leading to new crashes and hurt diagnostic, and it requires large
effort to minimize the affect (update all sites in clang to handle errorDepend
case), so we add a new flag (off by default) to allow us to develop/test
them incrementally.
This patch also has some trivial fixes to suppress diagnostics (to prevent regressions).
Tested:
all existing tests are passed (when both "-frecovery-ast", "-frecovery-ast-type" flags are flipped on);
Reviewed By: sammccall
Subscribers: rsmith, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79160
test cases
Add support for #pragma float_control
Reviewers: rjmccall, erichkeane, sepavloff
Differential Revision: https://reviews.llvm.org/D72841
This reverts commit 85dc033cac, and makes
corrections to the test cases that failed on buildbots.
https://reviews.llvm.org/D77954 caused a regression about ambiguity of new operator
in file scope.
This patch recovered the previous behavior for comparison without a caller.
This is a workaround. For real fix we need D71227
https://reviews.llvm.org/D78970
Currently clang fails to compile the following CUDA program in device compilation:
__host__ int foo(int x) {
return 1;
}
template<class T>
__device__ __host__ int foo(T x) {
return 2;
}
__device__ __host__ int bar() {
return foo(1);
}
__global__ void test(int *a) {
*a = bar();
}
This is due to foo is resolved to the __host__ foo instead of __device__ __host__ foo.
This seems to be a bug since __device__ __host__ foo is a viable callee for foo whereas
clang is unable to choose it.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D77954
accept as an extension.
This attempts to accept the same cases a GCC, plus cases where a
comparison is rewritten to an operator== with an integral but non-bool
return type; this is sufficient to avoid most problems with various
major open-source projects (such as ICU) and appears to fix all but one
of the comparison-related C++20 build breaks in LLVM.
This approach is being pursued for standardization.
Summary:
The expected pattern is for subclasses to initialize through
computeDependence, which needs only setDependence.
The few places that still use addDependence can be simulated with get+set.
Reviewers: hokein
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76392
Summary:
This changes introduces an enum to represent dependencies as a bitmask
and extract common patterns from code that computes dependency bits into
helper functions.
Reviewers: rsmith, martong, shafik, ilya-biryukov, hokein
Subscribers: hokein, sammccall, Mordante, riccibruno, merge_guards_bot, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71920
The C++ rules briefly allowed this, but the rule changed nearly 10 years
ago and we never updated our implementation to match. However, we've
warned on this by default for a long time, and no other compiler accepts
(even as an extension).
Address space conversion changes pointer representation.
This commit disallows such conversions when they are not
legal i.e. for the nested pointers even with compatible
address spaces. Because the address space conversion in
the nested levels can't be generated to modify the pointers
correctly. The behavior implemented is as follows:
- Any implicit conversions of nested pointers with different
address spaces is rejected.
- Any conversion of address spaces in nested pointers in safe
casts (e.g. const_cast or static_cast) is rejected.
- Conversion in low level C-style or reinterpret_cast is accepted
but with a warning (this aligns with OpenCL C behavior).
Fixes PR39674
Differential Revision: https://reviews.llvm.org/D73360
Summary:
Changes:
- Calls to consteval function are now evaluated in constant context but IR is still generated for them.
- Add diagnostic for taking address of a consteval function in non-constexpr context.
- Add diagnostic for address of consteval function accessible at runtime.
- Add tests
Reviewers: rsmith, aaron.ballman
Reviewed By: rsmith
Subscribers: mgrang, riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63960
In passing, split it up into three values (no explicit functions /
explicit conversion functions only / any explicit functions) in
preparation for using that in a future change.