If we resolve an overloaded operator call to a specific function during
template definition, don't perform ADL during template instantiation.
Doing so finds overloads that we're not supposed to find.
llvm-svn: 315005
When selecting constructors for initializing an object of type T from a single
expression of class type U, also consider conversion functions of U that
convert to T (rather than modeling such conversions as calling a conversion
function and then calling a constructor).
This approach is proposed as the resolution for the defect, and is also already
implemented by GCC.
llvm-svn: 314231
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
This recommits r313722, which was reverted in r313725 because clang
couldn't build compiler-rt. It failed to build because there were
function declarations that were missing 'noescape'. That has been fixed
in r313929.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313945
This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
devirtualized.
The code to detect devirtualized calls is already in IRGen, so move the
code to lib/AST and make it a shared utility between Sema and IRGen.
This commit fixes a linkage error I was seeing when compiling the
following code:
$ cat test1.cpp
struct Base {
virtual void operator()() {}
};
template<class T>
struct Derived final : Base {
void operator()() override {}
};
Derived<int> *d;
int main() {
if (d)
(*d)();
return 0;
}
rdar://problem/33195657
Differential Revision: https://reviews.llvm.org/D34301
llvm-svn: 307883
When enable_if disables a particular overload resolution candidate,
rummage through the enable_if condition to find the specific condition
that caused the failure. For example, if we have something like:
template<
typename Iter,
typename = std::enable_if_t<Random_access_iterator<Iter> &&
Comparable<Iterator_value_type<Iter>>>>
void mysort(Iter first, Iter last) {}
and we call "mysort" with "std::list<int>" iterators, we'll get a
diagnostic saying that the "Random_access_iterator<Iter>" requirement
failed. If we call "mysort" with
"std::vector<something_not_comparable>", we'll get a diagnostic saying
that the "Comparable<...>" requirement failed.
llvm-svn: 307196
The only use in-tree I can find for BuiltinTypes.ResultTy is a single
store to it. We otherwise just recompute what it should be later on (and
sometimes do things like argument conversions in the process of
recomputing it).
Since it's impossible to test if the value stored there is sane, and we
don't use it anyway, we should probably just drop the field.
I'll do a follow-up patch to rename BuiltinTypes.ParamTypes ->
BuiltinParamTypes in a bit. Wanted to keep this patch relatively
minimal.
Thanks to Petr Kudryavtsev for bringing this up!
llvm-svn: 304996
This is an initial commit to allow using it with constant expressions, a follow-up commit will enable full support for it in ObjC methods.
llvm-svn: 303712
We were sometimes doing a function->pointer conversion in
Sema::CheckPlaceholderExpr, which isn't the job of CheckPlaceholderExpr.
So, when we saw typeof(OverloadedFunctionName), where
OverloadedFunctionName referenced a name with only one function that
could have its address taken, we'd give back a function pointer type
instead of a function type. This is incorrect.
I kept the logic for doing the function pointer conversion in
resolveAndFixAddressOfOnlyViableOverloadCandidate because it was more
consistent with existing ResolveAndFix* methods.
llvm-svn: 302506
Do not add an overload if the function doesn't have a prototype; this
can happen if, for instance, a misplaced/malformed call site is
considered like a declaration for recovery purposes.
rdar://problem/31306325
llvm-svn: 301453
For OpenCL, the private address space qualifier is 0 in AST. Before this change, 0 address space qualifier
is always mapped to target address space 0. As now target private address space is specified by
alloca address space in data layout, address space qualifier 0 needs to be mapped to alloca addr space specified by the data layout.
This change has no impact on targets whose alloca addr space is 0.
With contributions from Matt Arsenault, Tony Tye and Wen-Heng (Jack) Chung
Differential Revision: https://reviews.llvm.org/D31404
llvm-svn: 299965
object types should be preferred over conversions to other object pointers
This change ensures that Clang will select the correct overload for the
following code sample:
void overload(Base *b);
void overload(Derived *d);
void test(Base<Base *> b) {
overload(b); // Select overload(Base *), not overload(Derived *)
}
rdar://20124827
Differential Revision: https://reviews.llvm.org/D31597
llvm-svn: 299648
- Replace documented return values (true/false) with what's actually
returned
- Doxygenify the comment
- Reflow said comment to 80 cols
Not overly familiar with Doxygen, so nits are welcome. :)
llvm-svn: 299603
- also replace direct equality checks against the ConstantEvaluated enumerator with isConstantEvaluted(), in anticipation of adding finer granularity to the various ConstantEvaluated contexts and reinstating certain restrictions on where lambda expressions can occur in C++17.
- update the clang tablegen backend that uses these Enumerators, and add the relevant scope where needed.
llvm-svn: 299316
If there is an unresolved member access AST node, and the base is
implicit, do not access/use it for generating candidate overloads for
code completion results.
Fixes PR31093.
llvm-svn: 298903
Sema holds the current FPOptions which is adjusted by 'pragma STDC
FP_CONTRACT'. This then gets propagated into expression nodes as they are
built.
This encapsulates FPOptions so that this propagation happens opaquely rather
than directly with the fp_contractable on/off bit. This allows controlled
transitioning of fp_contractable to a ternary value (off, on, fast). It will
also allow adding more fast-math flags later.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31166
llvm-svn: 298877
Summary: I added a new rank to ImplicitConversionRank enum to resolve the function overload ambiguity with vector types. Rank of scalar types conversion is lower than vector splat. So, we can choose which function should we call. See test for more details.
Reviewers: Anastasia, cfe-commits
Reviewed By: Anastasia
Subscribers: bader, yaxunl
Differential Revision: https://reviews.llvm.org/D30816
llvm-svn: 298366
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
llvm-svn: 295686
such guides below explicit ones, and ensure that references to the class's
template parameters are not treated as forwarding references.
We make a few tweaks to the wording in the current standard:
1) The constructor parameter list is copied faithfully to the deduction guide,
without losing default arguments or a varargs ellipsis (which the standard
wording loses by omission).
2) If the class template declares no constructors, we add a T() -> T<...> guide
(which will only ever work if T has default arguments for all non-pack
template parameters).
3) If the class template declares nothing that looks like a copy or move
constructor, we add a T(T<...>) -> T<...> guide.
#2 and #3 follow from the "pretend we had a class type with these constructors"
philosophy for deduction guides.
llvm-svn: 295007
This patch changes how we handle argument-dependent `diagnose_if`
attributes. In particular, we now check them in the same place that we
check for things like passing NULL to Nonnull args, etc. This is
basically better in every way than how we were handling them before. :)
This fixes PR31638, PR31639, and PR31640.
Differential Revision: https://reviews.llvm.org/D28889
llvm-svn: 293360
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811 and r291412, with a couple of
fixes for handling of explicitly-specified non-trailing template argument
packs.
llvm-svn: 291427
`diagnose_if` can be used to have clang emit either warnings or errors
for function calls that meet user-specified conditions. For example:
```
constexpr int foo(int a)
__attribute__((diagnose_if(a > 10, "configurations with a > 10 are "
"expensive.", "warning")));
int f1 = foo(9);
int f2 = foo(10); // warning: configuration with a > 10 are expensive.
int f3 = foo(f2);
```
It currently only emits diagnostics in cases where the condition is
guaranteed to always be true. So, the following code will emit no
warnings:
```
constexpr int bar(int a) {
foo(a);
return 0;
}
constexpr int i = bar(10);
```
We hope to support optionally emitting diagnostics for cases like that
(and emitting runtime checks) in the future.
Release notes will appear shortly. :)
Differential Revision: https://reviews.llvm.org/D27424
llvm-svn: 291418
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811, with a fix for handling of
explicitly-specified template argument packs.
llvm-svn: 291410
The rule we use is that a construction of a class type T from an argument of
type U cannot use an inherited constructor if U is the same as T or is derived
from T (or if the initialization would first convert it to such a type). This
(approximately) matches the rule in use by GCC, and matches the current proposed
DR resolution.
llvm-svn: 291403
Previously, if an overloaded function in a braced-init-list was encountered in
template argument deduction, and the overload set couldn't be resolved to a
particular function, we'd immediately produce a deduction failure. That's not
correct; this situation is supposed to result in that particular P/A pair being
treated as a non-deduced context, and deduction can still succeed if the type
can be deduced from elsewhere.
llvm-svn: 291014
This reverts commit r290808, as it broken all ARM and AArch64 test-suite
test: MultiSource/UnitTests/C++11/frame_layout
Also, please, next time, try to write a commit message in according to
our guidelines:
http://llvm.org/docs/DeveloperPolicy.html#commit-messages
llvm-svn: 290811
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside
the immediate context is much more common during substitution than during
implicit conversion sequence formation.
This does not implement the partial ordering portion of DR1391, which so
far appears to be misguided.
llvm-svn: 290808
dependent contexts when processing the template in C++11 and C++14, just like
we do in C++98 and C++1z. This allows us to diagnose invalid templates earlier.
llvm-svn: 290567
fail the merge if the arguments have different types (except if one of them was
deduced from an array bound, in which case take the type from the other).
This is correct because (except in the array bound case) the type of the
template argument in each deduction must match the type of the parameter, so at
least one of the two deduced arguments must have a mismatched type.
This is necessary because we would otherwise lose the type information for the
discarded template argument in the merge, and fail to diagnose the mismatch.
In order to power this, we now properly retain the type of a deduced non-type
template argument deduced from a declaration, rather than giving it the type of
the template parameter; we'll convert it to the template parameter type when
checking the deduced arguments.
llvm-svn: 290399
Print the fully qualified names for the overload candidates. This makes
it easier to tell what the ambiguity is. Especially if a template
is instantiated after a using namespace, it will not inherit the
namespace where it was declared. The specialization will give a message
about a partial order being ambiguous for the same (unqualified) name,
which does not help identify the failure.
Addresses PR31450!
llvm-svn: 290315
argument even if the expression is value-dependent (we need to suppress the
final portion of the narrowing check, but the rest of the checking can still be
done eagerly).
This affects template template argument validity and partial ordering under
p0522r0.
llvm-svn: 290276
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
This is a re-commit of r290080 (reverted in r290092) with a fix for a
use-after-lifetime bug.
llvm-svn: 290203
This reverts commit r290171. It triggers a bunch of warnings, because
the new enumerator isn't handled in all switches. We want a warning-free
build.
Replied on the commit with more details.
llvm-svn: 290173
Summary: Enabling the compression of CLK_NULL_QUEUE to variable of type queue_t.
Reviewers: Anastasia
Subscribers: cfe-commits, yaxunl, bader
Differential Revision: https://reviews.llvm.org/D27569
llvm-svn: 290171
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
llvm-svn: 290080
* a dependent non-type using-declaration within a function template can be
valid, as it can refer to an enumerator, so don't reject it in the template
definition
* we can partially substitute into a dependent using-declaration if it appears
within a (local class in a) generic lambda within a function template, which
means an UnresolvedUsing*Decl doesn't necessarily instantiate to a UsingDecl.
llvm-svn: 290071
Added a map to associate types and declarations with extensions.
Refactored existing diagnostic for disabled types associated with extensions and extended it to declarations for generic situation.
Fixed some bugs for types associated with extensions.
Allow users to use pragma to declare types and functions for supported extensions, e.g.
#pragma OPENCL EXTENSION the_new_extension_name : begin
// declare types and functions associated with the extension here
#pragma OPENCL EXTENSION the_new_extension_name : end
Differential Revision: https://reviews.llvm.org/D21698
llvm-svn: 289979
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
mirror the description in the standard. Per DR1295, this means that binding a
const / rvalue reference to a bit-field no longer "binds directly", and per
P0135R1, this means that we materialize a temporary in reference binding
after adjusting cv-qualifiers and before performing a derived-to-base cast.
In C++11 onwards, this should have fixed the last case where we would
materialize a temporary of the wrong type (with a subobject adjustment inside
the MaterializeTemporaryExpr instead of outside), but we still have to deal
with that possibility in C++98, unless we want to start using xvalues to
represent materialized temporaries there too.
llvm-svn: 289250
* __host__ __device__ functions are no longer considered to be
redeclarations of __host__ or __device__ functions. This prevents
unintentional merging of target attributes across them.
* Function target attributes are not considered (and must match) during
explicit instantiation and specialization of function templates.
Differential Revision: https://reviews.llvm.org/D25809
llvm-svn: 288962
When an object of class type is initialized from a prvalue of the same type
(ignoring cv qualifications), use the prvalue to initialize the object directly
instead of inserting a redundant elidable call to a copy constructor.
llvm-svn: 288866
arguments from a declaration; despite what the standard says, this form of
deduction should not be considering exception specifications.
llvm-svn: 288301
Before:
<stdin>:3:3: error: no matching member function for call to 'bar'
Foo().bar();
^
After:
<stdin>:3:9: error: no matching member function for call to 'bar'
Foo().bar();
^
llvm-svn: 287154
specification to resolve the exception specification as part of the type check,
in C++1z onwards. This is not actually part of P0012 / CWG1330 rules for when
an exception specification is "needed", but is necessary for sanity.
llvm-svn: 285663
mismatched dynamic exception specifications in expressions from an error to a
warning, since this is no longer ill-formed in C++1z.
Allow reference binding of a reference-to-non-noexcept function to a noexcept
function lvalue. As defect resolutions, also allow a conditional between
noexcept and non-noexcept function lvalues to produce a non-noexcept function
lvalue (rather than decaying to a function pointer), and allow function
template argument deduction to deduce a reference to non-noexcept function when
binding to a noexcept function type.
llvm-svn: 284905
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
This is a re-commit of r284800.
llvm-svn: 284890
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
llvm-svn: 284800
Original commit message:
[c++1z] Teach composite pointer type computation how to compute the composite
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284785
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284753
not instantiate exception specifications of functions if they were only used in
unevaluated contexts (other than 'noexcept' expressions).
In C++17 onwards, this becomes essential since the exception specification is
now part of the function's type.
Note that this means that constructs like the following no longer work:
struct A {
static T f() noexcept(...);
decltype(f()) *p;
};
... because the decltype expression now needs the exception specification of
'f', which has not yet been parsed.
llvm-svn: 284549
CheckSingleAssignmentConstraints. These no longer produce ExprError() when they
have not emitted an error, and reliably inform the caller when they *have*
emitted an error.
This fixes some serious issues where we would fail to emit any diagnostic for
invalid code and then attempt to emit code for an invalid AST, and conversely
some issues where we would emit two diagnostics for the same problem.
llvm-svn: 283508
Summary:
We'd attempted to allow this, but turns out we were doing a very bad
job. :)
Making this work properly would be a giant change in clang. For
example, we'd need to make CXXRecordDecl::getDestructor()
context-sensitive, because the destructor you end up with depends on
where you're calling it from.
For now (and hopefully for ever), just disallow overloading of
destructors in CUDA.
Reviewers: rsmith
Subscribers: cfe-commits, tra
Differential Revision: https://reviews.llvm.org/D24571
llvm-svn: 283120
r280553 introduced an issue where we'd emit ambiguity errors for code
like:
```
void foo(int *, int);
void foo(unsigned int *, unsigned int);
void callFoo() {
unsigned int i;
foo(&i, 0); // ambiguous: int->unsigned int is worse than int->int,
// but unsigned int*->unsigned int* is better than
// int*->int*.
}
```
This patch fixes this issue by changing how we handle ill-formed (but
valid) implicit conversions. Candidates with said conversions now always
rank worse than candidates without them, and two candidates are
considered to be equally bad if they both have these conversions for
the same argument.
Additionally, this fixes a case in C++11 where we'd complain about an
ambiguity in a case like:
```
void f(char *, int);
void f(const char *, unsigned);
void g() { f("abc", 0); }
```
...Since conversion to char* from a string literal is considered
ill-formed in C++11 (and deprecated in C++03), but we accept it as an
extension.
llvm-svn: 280847
Summary:
C++1z 6.4.1/p2:
If the if statement is of the form if constexpr, the value of the
condition shall be a contextually converted constant expression of type
bool [...]
C++1z 5.20/p4:
[...] A contextually converted constant expression of type bool is an
expression, contextually converted to bool (Clause4), where the
converted expression is a constant expression and the conversion
sequence contains only the conversions above. [...]
Contextually converting result of an expression `e` to a Boolean value
requires `bool t(e)` to be well-formed.
An explicit conversion function is only considered as a user-defined
conversion for direct-initialization, which is essentially what
//contextually converted to bool// requires.
Also, fixes PR28470.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D24158
llvm-svn: 280838
We have invariants we like to guarantee for the
`ImplicitConversionKind`s in a `StandardConversionSequence`. These
weren't being upheld in code that r280553 touched, so Richard suggested
that we should fix that. See D24113.
I'm not entirely sure how to go about testing this, so no test case is
included. Suggestions welcome.
llvm-svn: 280562
This patch allows us to perform incompatible pointer conversions when
resolving overloads in C. So, the following code will no longer fail to
compile (though it will still emit warnings, assuming the user hasn't
opted out of them):
```
void foo(char *) __attribute__((overloadable));
void foo(int) __attribute__((overloadable));
void callFoo() {
unsigned char bar[128];
foo(bar); // selects the char* overload.
}
```
These conversions are ranked below all others, so:
A. Any other viable conversion will win out
B. If we had another incompatible pointer conversion in the example
above (e.g. `void foo(int *)`), we would complain about
an ambiguity.
Differential Revision: https://reviews.llvm.org/D24113
llvm-svn: 280553
Summary:
Some function calls in CUDA are allowed to appear in
semantically-correct programs but are an error if they're ever
codegen'ed. Specifically, a host+device function may call a host
function, but it's an error if such a function is ever codegen'ed in
device mode (and vice versa).
Previously, clang made no attempt to catch these errors. For the most
part, they would be caught by ptxas, and reported as "call to unknown
function 'foo'".
Now we catch these errors and report them the same as we report other
illegal calls (e.g. a call from a host function to a device function).
This has a small change in error-message behavior for calls that were
previously disallowed (e.g. calls from a host to a device function).
Previously, we'd catch disallowed calls fairly early, before doing
additional semantic checking e.g. of the call's arguments. Now we catch
these illegal calls at the very end of our semantic checks, so we'll
only emit a "illegal CUDA call" error if the call is otherwise
well-formed.
Reviewers: tra, rnk
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23242
llvm-svn: 278759
Currently, when trying to evaluate an enable_if condition, we try to
evaluate all arguments a user passes to a function. Given that we can't
use variadic arguments from said condition anyway, not converting them
is a reasonable thing to do. So, this patch makes us ignore any varargs
when attempting to check an enable_if condition.
We'd crash because, in order to convert an argument, we need its
ParmVarDecl. Variadic arguments don't have ParmVarDecls.
llvm-svn: 278471
Summary:
When we emit err_ref_bad_target, we should emit a "'method' declared
here" note. We already do so in most places, just not in
BuildCallToMemberFunction.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23240
llvm-svn: 278195
Summary:
I want to reuse "CheckCUDAFoo" in a later patch. Also, I think
IsAllowedCUDACall gets the point across more clearly.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23238
llvm-svn: 278193
I'm told that some optimizers like lambdas a lot more than mem_fn.
Given that the readability difference is basically nil, and we seem to
use lambdas basically everywhere else, it seems sensible to just use
lambdas.
llvm-svn: 276577
It's a patch for PR28050. Seems like overloading resolution wipes out
the first standard conversion sequence (before user-defined conversion)
in case of deprecated string literal conversion.
Differential revision: https://reviews.llvm.org/D21228
Patch by Alexander Makarov
llvm-svn: 275970
Summary:
You can overload a destructor in CUDA, and SemaOverload needs to be
tweaked not to crash when it sees an explicit call to an overloaded
destructor.
Reviewers: rsmith
Subscribers: cfe-commits, tra
Differential Revision: http://reviews.llvm.org/D21912
llvm-svn: 275231
We didn't assign an inheritance model for 'Foo' if the event an
exrepssion like '&Foo::Bar' occured if 'Bar' could resolve to multiple
functions.
Once the overload set is resolved to a particular member, we enforce a
specific inheritance model.
This fixes PR28360.
llvm-svn: 274202
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
Given the following C++:
```
void foo();
void foo() __attribute__((enable_if(false, "")));
bool bar() {
auto P = foo;
return P == foo;
}
```
We'll currently happily (and correctly) resolve `foo` to the `foo`
overload without `enable_if` when assigning to `P`. However, we'll
complain about an ambiguous overload on the `P == foo` line, because
`Sema::CheckPlaceholderExpr` doesn't recognize that there's only one
`foo` that could possibly work here.
This patch teaches `Sema::CheckPlaceholderExpr` how to properly deal
with such cases.
Grepping for other callers of things like
`Sema::ResolveAndFixSingleFunctionTemplateSpecialization`, it *looks*
like this is the last place that needed to be fixed up. If I'm wrong,
I'll see if there's something we can do that beats what amounts to
whack-a-mole with bugs.
llvm-svn: 272080
This is in preparation for C++ P0136R1, which switches the model for inheriting
constructors over from synthesizing a constructor to finding base class
constructors (via using shadow decls) when looking for derived class
constructors.
llvm-svn: 269231
This patch implements __unaligned (MS extension) as a proper type qualifier
(before that, it was implemented as an ignored attribute).
It also fixes PR27367 and PR27666.
Differential Revision: http://reviews.llvm.org/D20103
llvm-svn: 269220
This patch fixes a bug where we would assume all value-dependent
enable_if conditions give successful results.
Instead, we consider value-dependent enable_if conditions to always
fail. While this isn't ideal, this is the best we can realistically do
without changing both enable_if's semantics and large parts of Sema
(specifically, all of the parts that don't expect type dependence to
come out of nowhere, and that may interact with overload resolution).
Differential Revision: http://reviews.llvm.org/D20130
llvm-svn: 269154
Currently, if clang::isBetterOverloadCandidate encounters an enable_if
attribute on either candidate that it's inspecting, it will ignore all
lower priority attributes (e.g. pass_object_size). This is problematic
in cases like:
```
void foo(char *c) __attribute__((enable_if(1, "")));
void foo(char *c __attribute__((pass_object_size(0))))
__attribute__((enable_if(1, "")));
```
...Because we would ignore the pass_object_size attribute in the second
`foo`, and consider any call to `foo` to be ambiguous.
This patch makes overload resolution consult further tiebreakers (e.g.
pass_object_size) if two candidates have equally good enable_if
attributes.
llvm-svn: 269005
This patch corresponds to reviews:
http://reviews.llvm.org/D15120http://reviews.llvm.org/D19125
It adds support for the __float128 keyword, literals and target feature to
enable it. Based on the latter of the two aforementioned reviews, this feature
is enabled on Linux on i386/X86 as well as SystemZ.
This is also the second attempt in commiting this feature. The first attempt
did not enable it on required platforms which caused failures when compiling
type_traits with -std=gnu++11.
If you see failures with compiling this header on your platform after this
commit, it is likely that your platform needs to have this feature enabled.
llvm-svn: 268898
This patch implements __unaligned (MS extension) as a proper type qualifier
(before that, it was implemented as an ignored attribute).
It also fixes PR27367.
Differential Revision: http://reviews.llvm.org/D19654
llvm-svn: 268727
With this patch compiler emits warning if it tries to make implicit instantiation
of a template but cannot find the template definition. The warning can be suppressed
by explicit instantiation declaration or by command line options
-Wundefined-var-template and -Wundefined-func-template. The implementation follows
the discussion of http://reviews.llvm.org/D12326.
Differential Revision: http://reviews.llvm.org/D16396
llvm-svn: 266719
Since this patch provided support for the __float128 type but disabled it
on all platforms by default, some platforms can't compile type_traits with
-std=gnu++11 since there is a specialization with __float128.
This reverts the patch until D19125 is approved (i.e. we know which platforms
need this support enabled).
llvm-svn: 266460
This patch corresponds to review:
http://reviews.llvm.org/D15120
It adds support for the __float128 keyword, literals and a target feature to
enable it. This support is disabled by default on all targets and any target
that has support for this type is free to add it.
Based on feedback that I've received from target maintainers, this appears to
be the right thing for most targets. I have not heard from the maintainers of
X86 which I believe supports this type. I will subsequently investigate the
impact of enabling this on X86.
llvm-svn: 266186
Instead of searching the global pool multiple times: in
LookupFactoryMethodInGlobalPool, LookupInstanceMethodInGlobalPool,
CollectMultipleMethodsInGlobalPool, and AreMultipleMethodsInGlobalPool,
we now collect the method candidates in CollectMultipleMethodsInGlobalPool
only, and other functions will use the collected method set.
This commit adds parameter "Methods" to AreMultipleMethodsInGlobalPool,
and SelectBestMethod. It also changes the implementation of
CollectMultipleMethodsInGlobalPool to collect the desired kind first, if none is
found, to collect the other kind. This avoids the need to call both
LookupFactoryMethodInGlobalPool and LookupInstanceMethodInGlobalPool.
llvm-svn: 265711
With this patch, by a constexpr function is implicitly host+device
unless:
a) it's a variadic function (variadic functions are not allowed on the
device side), or
b) it's preceeded by a __device__ overload in a system header.
The restriction on overloading __host__ __device__ functions on the
basis of their CUDA attributes remains in place, but we use (b) to allow
us to define __device__ overloads for constexpr functions in cmath,
which would otherwise be __host__ __device__ and thus not overloadable.
You can disable this behavior with -fno-cuda-host-device-constexpr.
Reviewers: tra, rnk, rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18380
llvm-svn: 264964
Summary:
IsOverload has a param named UseUsingDeclRules. But as far as I can
tell, it should be called UseMemberUsingDeclRules. That is, it only
applies to "using" declarations inside classes or structs.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18538
llvm-svn: 264920
Summary:
* -fcuda-target-overloads
Previously unconditionally set to true by the driver. Necessary for
correct functioning of the compiler -- our CUDA headers wrapper won't
compile without this.
* -fcuda-disable-target-call-checks
Previously unconditionally set to true by the driver. Necessary to
compile almost any external CUDA code -- almost all libraries assume
that host+device code can call host or device functions.
* -fcuda-allow-host-calls-from-host-device
No effect when target overloading is enabled.
Reviewers: tra
Subscribers: rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D18416
llvm-svn: 264739
Also includes a minor ``enable_if`` docs update.
Currently, our address-of overload machinery will only allow implicit
conversions of overloaded functions to void* in C. For example:
```
void f(int) __attribute__((overloadable));
void f(double) __attribute__((overloadable, enable_if(0, "")));
void *fp = f; // OK. This is C and the target is void*.
void (*fp2)(void) = f; // Error. This is C, but the target isn't void*.
```
This patch makes the assignment of `fp2` select the `f(int)` overload,
rather than emitting an error (N.B. you'll still get a warning about the
`fp2` assignment if you use -Wincompatible-pointer-types).
Differential Revision: http://reviews.llvm.org/D13704
llvm-svn: 264132
Some functions can't have their address taken. If we encounter an
overload set where only one of the candidates can have its address
taken, we should automatically select that candidate in cast
expressions.
Differential Revision: http://reviews.llvm.org/D17701
llvm-svn: 263887
Similar to the template cases in r262050, when a C++ method in an
unavailable struct/class calls unavailable API, don't diagnose an error.
I.e., this case was failing:
void foo() __attribute__((unavailable));
struct __attribute__((unavailable)) A {
void bar() { foo(); }
};
Since A is unavailable, A::bar is allowed to call foo. However, we were
emitting a diagnostic here. This commit checks up the context chain
from A::bar, in a manner inspired by SemaDeclAttr.cpp:isDeclUnavailable.
I expected to find other related issues but failed to trigger them:
- I wondered if DeclBase::getAvailability should check for
`TemplateDecl` instead of `FunctionTemplateDecl`, but I couldn't find
a way to trigger this. I left behind a few extra tests to make sure
we don't regress.
- I wondered if Sema::isFunctionConsideredUnavailable should be
symmetric, checking up the context chain of the callee (this commit
only checks up the context chain of the caller). However, I couldn't
think of a testcase that didn't require first referencing the
unavailable type; this, we already diagnose.
rdar://problem/25030656
llvm-svn: 262921
to allow arbitrary data to be associated with a parameter.
Also, fix a bug where we apparently haven't been serializing
this information for the last N years.
llvm-svn: 262278
__global__ functions are present on both host and device side,
so providing __host__ or __device__ overloads is not going to
do anything useful.
llvm-svn: 261778
This is an artefact of split-mode CUDA compilation that we need to
mimic. HD functions are sometimes allowed to call H or D functions. Due
to split compilation mode device-side compilation will not see host-only
function and thus they will not be considered at all. For clang both H
and D variants will become function overloads visible to
compiler. Normally target attribute is considered only if C++ rules can
not determine which function is better. However in this case we need to
ignore functions that would not be present during current compilation
phase before we apply normal overload resolution rules.
Changes:
* introduced another level of call preference to better describe
possible call combinations.
* removed WrongSide functions from consideration if the set contains
SameSide function.
* disabled H->D, D->H and G->H calls. These combinations are
not allowed by CUDA and we were reluctantly allowing them to work
around device-side calls to math functions in std namespace.
We no longer need it after r258880.
Differential Revision: http://reviews.llvm.org/D16870
llvm-svn: 260697
For an explicit specialization, we first build a FunctionDecl, and then
we call SubstDecl() on it to build a second FunctionDecl, which has the
first FunctionDecl as canonical decl.
The address of an explicit specialization of function template used to be the
canonical decl of the FunctionDecl. This is different from all the other
DeduceTemplateArguments() calls in SemaOverload, and since the canonical decl
isn't visited by ParentMap while the redecl is, it also made ParentMap assert
when computing the parent of a address-of-explicit-specialization-fun-template.
To fix, remove the getCanonicalDecl() call. No behavior difference for clang,
but it fixes an assert in ParentMap (which is e.g. used by libTooling).
llvm-svn: 260159
-Wdelete-non-virtual-dtor warns if A is a type with virtual functions but
without virtual dtor has its constructor called via `delete a`. This makes the
warning also fire if the dtor is called via `a->~A()`. This would've found a
security bug in Chromium at compile time. Fixes PR26137.
To fix the warning, add a virtual destructor, make the class final, or remove
its other virtual methods. If you want to silence the warning, there's also
a fixit that shows how:
test.cc:12:3: warning: destructor called on 'B' ... [-Wdelete-non-virtual-dtor]
b->~B();
^
test.cc:12:6: note: qualify call to silence this warning
b->~B();
^
B::
http://reviews.llvm.org/D16206
llvm-svn: 257939
We were emitting diagnostics from our shiny new C-only overload
resolution mode. This patch attempts to silence all such diagnostics.
This fixes PR26085.
Differential Revision: http://reviews.llvm.org/D16159
llvm-svn: 257710
In {CG,}ExprConstant.cpp, we weren't treating vector splats properly.
This patch makes us treat splats more properly.
Additionally, this patch adds a new cast kind which allows a bool->int
cast to result in -1 or 0, instead of 1 or 0 (for true and false,
respectively), so we can sanely model OpenCL bool->int casts in the AST.
Differential Revision: http://reviews.llvm.org/D14877
llvm-svn: 257559
Given an expression like `(&Foo)();`, we perform overload resolution as
if we are calling `Foo` directly. This causes problems if `Foo` is a
function that can't have its address taken. This patch teaches overload
resolution to ignore functions that can't have their address taken in
such cases.
Differential Revision: http://reviews.llvm.org/D15590
llvm-svn: 257016
by overload resolution because deduction succeeds, but the substituted
parameter type for some parameter (with deduced type) doesn't exactly match the
corresponding adjusted argument type.
llvm-svn: 256657
Doing so required separating them so that the former doesn't inherit
from the latter anymore. Investigating that, it became clear that the
inheritance wasn't actually providing real value in any case.
So also:
- Remove a bunch of redundant functions (getExplicitTemplateArgs,
getOptionalExplicitTemplateArgs) on various Expr subclasses which
depended on the inheritance relationship.
- Switched external callers to use pre-existing accessors that return the
data they're actually interested in (getTemplateArgs,
getNumTemplateArgs, etc).
- Switched internal callers to use pre-existing getTemplateKWAndArgsInfo.
llvm-svn: 256359
is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
for the derived class into it. This is mostly just a cleanup, but could in
principle be a bugfix if there is some codepath that reaches here and didn't
previously require a complete type (I couldn't find any such codepath, though).
llvm-svn: 256037
The introduction of pass_object_size fixed a few bugs related to taking
the address of a function with enable_if attributes. This patch adds
tests for the cases that were fixed.
llvm-svn: 254646
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
the linkage of the enumeration. For enumerators of unnamed enumerations, extend
the -Wmodules-ambiguous-internal-linkage extension to allow selecting an
arbitrary enumerator (but only if they all have the same value, otherwise it's
ambiguous).
llvm-svn: 253010
internal linkage entities in different modules from r250884 to apply to all
names, not just function names.
This is really awkward: we don't want to merge internal-linkage symbols from
separate modules, because they might not actually be defining the same entity.
But we don't want to reject programs that use such an ambiguous symbol if those
internal-linkage symbols are in fact equivalent. For now, we're resolving the
ambiguity by picking one of the equivalent definitions as an extension.
llvm-svn: 252063
We permit implicit conversion from pointer-to-function to
pointer-to-object when -fms-extensions is specified. This is rather
unfortunate, move this into -fms-compatibility and only permit it within
system headers unless -Wno-error=microsoft-cast is specified.
llvm-svn: 251738
headers. If those headers end up being textually included twice into the same
module, we get ambiguity errors.
Work around this by downgrading the ambiguity error to a warning if multiple
identical internal-linkage functions appear in an overload set, and just pick
one of those functions as the lookup result.
llvm-svn: 250884
Previously, our logic when taking the address of an overloaded function
would not consider enable_if attributes, so long as all of the enable_if
conditions on a given candidate were true. So, two functions with
identical signatures (one with enable_if attributes, the other without),
would be considered equally good overloads. If we were calling the
function instead of taking its address, then the function with enable_if
attributes would be preferred.
This patch makes us prefer the candidate with enable_if regardless of if
we're calling or taking the address of an overloaded function.
Differential Revision: http://reviews.llvm.org/D13795
llvm-svn: 250486
This fixes a bug where one can take the address of a conditionally
enabled function to drop its enable_if guards. For example:
int foo(int a) __attribute__((enable_if(a > 0, "")));
int (*p)(int) = &foo;
int result = p(-1); // compilation succeeds; calls foo(-1)
Overloading logic has been updated to reflect this change, as well.
Functions with enable_if attributes that are always true are still
allowed to have their address taken.
Differential Revision: http://reviews.llvm.org/D13607
llvm-svn: 250090
Fixed a bug where we'd emit multiple diagnostics if there was a problem
taking the address of an overloaded template function.
Differential Revision: http://reviews.llvm.org/D13664
llvm-svn: 250078
C allows for some implicit conversions that C++ does not, e.g. void* ->
char*. This patch teaches clang that these conversions are okay when
dealing with overloads in C.
Differential Revision: http://reviews.llvm.org/D13604
llvm-svn: 249995
This patch fixes the order in which we evaluate the different ways that
a function call could be disallowed. Now, if you call a non-overloaded
function with an incomplete type and failing enable_if, we'll prioritize
reporting the more obvious error (use of incomplete type) over reporting
the failing enable_if.
Thanks to Ettore Speziale for the patch!
llvm-svn: 248595
and fix the only code that was depending on this so that it sets all the
relevant flags appropriately.
No functionality change intended.
llvm-svn: 248430
The patch makes it possible to parse CUDA files that contain host/device
functions with identical signatures, but different attributes without
having to physically split source into host-only and device-only parts.
This change is needed in order to parse CUDA header files that have
a lot of name clashes with standard include files.
Gory details are in design doc here: https://goo.gl/EXnymm
Feel free to leave comments there or in this review thread.
This feature is controlled with CC1 option -fcuda-target-overloads
and is disabled by default.
Differential Revision: http://reviews.llvm.org/D12453
llvm-svn: 248295
The type of a member pointer is incomplete if it has no inheritance
model. This lets us reuse more general logic already embedded in clang.
llvm-svn: 247346
-fapple-kext is an exception because calls will still go through
the vtable in that mode. Add a note to make the user aware of that.
PR: 23215
Differential Revision: http://reviews.llvm.org/D10935
llvm-svn: 242246
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This generalizes the checking of null arguments to also work with
values of pointer-to-function, reference-to-function, and block
pointer type, using the nullability information within the underling
function prototype to extend non-null checking, and diagnoses returns
of 'nil' within a function with a __nonnull return type.
Note that we don't warn about nil returns from Objective-C methods,
because it's common for Objective-C methods to mimic the nil-swallowing
behavior of the receiver by checking ostensibly non-null parameters
and returning nil from otherwise non-null methods in that
case.
It also diagnoses (via a separate flag) conversions from nullable to
nonnull pointers. It's a separate flag because this warning can be noisy.
llvm-svn: 240153
The underlying problem in PR23823 already existed before my recent change
in r239558, but that change made it worse (failing not only for undeclared
symbols, but also failed overload resolution). This makes Clang not try to
delay the lookup in SFINAE context. I assume no current code is relying on
SFINAE working with lookups that need to be delayed, because that never
seems to have worked.
Differential Revision: http://reviews.llvm.org/D10417
llvm-svn: 239639
This patch does two things in order to enable compilation of the problematic code in PR23810:
1. In Sema::buildOverloadedCallSet, it postpones lookup for MS mode when no
viable candidate is found in the overload set. Previously, lookup would only
be postponed here if the overload set was empty.
2. Make BuildRecoveryCallExpr call Sema::DiagnoseEmptyLookup under more circumstances.
There is a comment in DiagnoseTwoPhaseLookup that says "Don't diagnose names we find in
classes; we get much better diagnostics for these from DiagnoseEmptyLookup." The problem
was that DiagnoseEmptyLookup might not get called later, and we failed to recover.
Differential Revision: http://reviews.llvm.org/D10369
llvm-svn: 239558
integral promotion only if it converts to the underlying type or its promoted
type, not if it converts to the promoted type that the bitfield would have it
if were of the underlying type.
llvm-svn: 233457
selects a deleted function, the outer function is still a candidate even though
the initialization sequence is "otherwise ill-formed".
llvm-svn: 227169
The improved completion in call context now works with:
- Functions.
- Member functions.
- Constructors.
- New expressions.
- Function call expressions.
- Template variants of the previous.
There are still rough edges to be fixed:
- Provide support for optional parameters. (fix known)
- Provide support for member initializers. (fix known)
- Provide support for variadic template functions. (fix unknown)
- Others?
llvm-svn: 226670
ignore it during overload resolution when initializing
X from a value of type cv X.
Previously, our rule here only ignored specializations
of constructor templates. That's probably because the
standard says that constructors are outright ill-formed
if their first parameter is literally X and they're
callable with one argument. However, Clang only
enforces that prohibition against non-implicit
instantiations; I'm not sure why, but it seems to be
deliberate. Given that, the most sensible thing to
do is to just ignore the "illegal" constructor
regardless of where it came from.
Also, stop ignoring such constructors silently:
print a note explaining why they're being ignored.
Fixes <rdar://19199836>.
llvm-svn: 224205
We don't yet support pointer-to-member template arguments that have undergone
pointer-to-member conversions, mostly because we don't have a mangling for them yet.
llvm-svn: 222807
Summary:
We have this error from a while (Wed Jun 15 18:02:42 2011
r133103)
Reviewers: rsmith
Reviewed By: rsmith
Differential Revision: http://reviews.llvm.org/D6296
llvm-svn: 222169
As PR20495 demonstrates, Clang currenlty infers the CUDA target (host/device,
etc) for implicit members (constructors, etc.) incorrectly. This causes errors
and even assertions in Clang when compiling code (assertions in C++11 mode where
implicit move constructors are added into the mix).
Fix the problem by inferring the target from the methods the implicit member
should call (depending on its base classes and fields).
llvm-svn: 218624
that function, and apart from being slow, this is unnecessary: ADL can trigger
instantiations that are not permitted here. The standard isn't *completely*
clear here, but this seems like the intent, and in any case this approach is
permitted by [temp.inst]p7.
llvm-svn: 218330
global pool in the course of method selection for
a messaging expression, select one with the most general
return type of 'id'. This is to remove type-mismatch
warning (which is useless) as result of random selection of
method with more restrictive return type. rdar://18095772
llvm-svn: 216560
Changes diagnostic options, language standard options, diagnostic identifiers, diagnostic wording to use c++14 instead of c++1y. It also modifies related test cases to use the updated diagnostic wording.
llvm-svn: 215982
MSVC doesn't decide what the inheritance model for a returned member
pointer *until* a call expression returns it.
This fixes PR20017.
llvm-svn: 215164
Summary:
If during constructing a standard conversion sequence, we resolve an
overload, we need to adjust the from type in the SCS according to the
resolved operator.
I found this bug when debugging PR20218. This doesn't seem to be
observable, so there is no good way of testing it.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4402
llvm-svn: 213680
array prvalue), treat that as a direct binding. Only the class prvalue case
needs to be excluded here; the rest are extensions anyway, so we can treat them
as we would in C++11.
llvm-svn: 212978
a function pointer is neither better nor worse than binding a function lvalue
to a function rvalue reference. Don't get confused and think that both bindings
are binding to a function lvalue (which would make the lvalue form win); the
const reference is binding to an rvalue.
The "real" bug in PR20218 is still present: we're getting the wrong answer from
template argument deduction, and that's what leads us to this weird overload
set.
llvm-svn: 212916
Testcase coming out of creduce will land in a separate commit shortly.
Also, it appears that this callback is used even in a SFINAE context where the results are never displayed.
llvm-svn: 208062
order by the number of missing or extra parameters. This is useful if
there are more than a few overload candidates with arity mismatches,
particularly in the presence of -fshow-overloads=best.
llvm-svn: 207796
obviously won't work. Specifically, don't suggest methods (static or
not) from unrelated classes when the expression is a method call
through a specific object.
llvm-svn: 205653
When a lax conversion featured a vector and a non-vector, we were
only requiring the non-vector to be a scalar type, but really it
needs to be a real type (i.e. integral or real floating); it is
not reasonable to allow a pointer, member pointer, or complex
type here.
r198474 required lax conversions to match in "data size", i.e.
element size * element count, forbidding matches that happen
only because a vector is rounded up to the nearest power of two
in size. Unfortunately, the erroneous logic was repeated in
several different places; unify them to use the new condition,
so that it triggers for arbitrary conversions and not just
those performed as part of binary operator checking.
rdar://15931426
llvm-svn: 200810
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
MSAN detected a path that leaves DeprecatedStringLiteralToCharPtr uninitialized.
UserDefinedConversionSequence::First is a StandardConversionSequence that must
be initialized with setAsIdentityConversion.
llvm-svn: 199988
Lift the getFunctionDecl() utility out of the parser into a general
Decl::getAsFunction() and use it to simplify other parts of the implementation.
Reduce isFunctionOrFunctionTemplate() to a simple type check that works the
same was as the other is* functions and move unwrapping of shadowed decls to
callers so it doesn't get run twice.
Shuffle around canSkipFunctionBody() to reduce virtual dispatch on ASTConsumer.
There's no need to query when we already know the body can't be skipped.
llvm-svn: 199794
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
String literal to char* conversion is deprecated in C++03, and is removed in
C++11. We still accept this conversion in C++11 mode as an extension, if we find
it in the best viable function.
llvm-svn: 199513
There's been long-standing confusion over the role of these two options. This
commit makes the necessary changes to differentiate them clearly, following up
from r198936.
MicrosoftExt (aka. fms-extensions):
Enable largely unobjectionable Microsoft language extensions to ease
portability. This mode, also supported by gcc, is used for building software
like FreeBSD and Linux kernel extensions that share code with Windows drivers.
MSVCCompat (aka. -fms-compatibility, formerly MicrosoftMode):
Turn on a special mode supporting 'heinous' extensions for drop-in
compatibility with the Microsoft Visual C++ product. Standards-compilant C and
C++ code isn't guaranteed to work in this mode. Implies MicrosoftExt.
Note that full -fms-compatibility mode is currently enabled by default on the
Windows target, which may need tuning to serve as a reasonable default.
See cfe-commits for the full discourse, thread 'r198497 - Move MS predefined
type_info out of InitializePredefinedMacros'
No change in behaviour.
llvm-svn: 199209
of objc_bridge_related attribute; eliminate
unnecessary diagnostics which is issued elsewhere,
fixit now produces a valid AST tree per convention.
This results in some simplification in handling of
this attribute as well. // rdar://15499111
llvm-svn: 197436
substitution failure, allow a flag to be set on the Diagnostic object,
to mark it as 'causes substitution failure'.
Refactor Diagnostic.td and the tablegen to use an enum for SFINAE behavior
rather than a bunch of flags.
llvm-svn: 194444
Under ARC++, a reference to a const Objective-C pointer is implicitly
treated as __unsafe_unretained, and can be initialized with (e.g.) a
__strong lvalue. Make sure this behavior does not break template
argument deduction and (related) that partial ordering still prefers a
'T* const&' template over a 'T const&' template when this case kicks
in. Fixes <rdar://problem/14467941>.
llvm-svn: 194239
When performing an Objective-C message send to a value of class type,
perform a contextual conversion to an Objective-C pointer type. We've
had this for a long time, but it recently regressed. Fixes
<rdar://problem/15234703>.
llvm-svn: 194224
would be deleted are still declared, but are ignored by overload resolution.
Also, don't delete such members if a subobject has no corresponding move
operation and a non-trivial copy. This causes us to implicitly declare move
operations in more cases, but risks move-assigning virtual bases multiple
times in some circumstances (a warning for that is to follow).
llvm-svn: 193969
If the sole distinction between two declarations is that one has a
__restrict qualifier then we should not consider it to be an overload.
Instead, we will consider it as an incompatible redeclaration which is
similar to how MSVC, ICC and GCC would handle it.
This fixes PR17786.
N.B. We must not mangle in __restrict into method qualifiers becase we
don't allow overloading between such declarations anymore. To do
otherwise would be a violation of the Itanium ABI.
llvm-svn: 193964
ResolveSingleFunctionTemplateSpecialization() returns 0 and doesn't emit diags
unless the expression has template-ids, so we must null check the result.
Also add a better diag noting which overloads are causing the problem.
Reviewed by Aaron Ballman.
llvm-svn: 193055
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
an additional conversion (other than a qualification conversion) would be
required after the explicit conversion.
Conversely, do allow explicit conversion functions to be used when initializing
a temporary for a reference binding in direct-list-initialization.
llvm-svn: 191150
Summary:
This fixes several issues with the original implementation:
- Win32 entry points cannot be in namespaces
- A Win32 entry point cannot be a function template, diagnose if we it.
- Win32 entry points cannot be overloaded.
- Win32 entry points implicitly return, similar to main.
Reviewers: rnk, rsmith, whunt, timurrrr
Reviewed By: rnk
CC: cfe-commits, nrieck
Differential Revision: http://llvm-reviews.chandlerc.com/D1683
llvm-svn: 190818
non-member function, the number of arguments in the two candidate calls
will be different (the non-member call will have one extra argument).
We used to get confused by this, and fail to compare the last argument
when testing whether the member is better, resulting in us always
thinking it is, even if the non-member is more specialized in the last
argument.
llvm-svn: 190470
initializer list containing a single element of type T, be sure to mark the
sequence as a list conversion sequence so that it is known to be worse than an
implicit conversion sequence that initializes a std::initializer_list object.
llvm-svn: 190115
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
comparing non-reference function parameters. The qualifiers don't matter for
comparisons.
This is a re-commit of r187769, which was accidentially reverted in r187770,
with a simplification at the suggestion of Eli Friedman.
llvm-svn: 188112
We would disallow the case where the overloaded member expression is
coming from an address-of operator but we wouldn't issue any diagnostics
when the overloaded member expression comes by way of a function to
pointer decay cast.
Clang's implementation of DR61 is now seemingly complete.
llvm-svn: 187559
This patch essentially removes all the FIXMEs following calls to DeduceTemplateArguments() that want to keep track of deduction failure info.
llvm-svn: 186730
recovery is not attempted with the fixit. Also move the associated test
case from FixIt/fixit.cpp to SemaCXX/member-expr.cpp since the fixit is
no longer automatically applied.
llvm-svn: 186342
standard's rule that an extern "C" declaration conflicts with any entity in the
global scope with the same name. Now we only care if the global scope entity is
a variable declaration (and so might have the same mangled name as the extern
"C" declaration). This has been reported as a standard defect.
Original commit message:
PR7927, PR16247: Reimplement handling of matching extern "C" declarations
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185281
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185229
to provide proper overloading, and also prevents mangling conflicts with
template arguments of protocol-qualified type.
This is a non-backward-compatible mangling change, but per discussion with
John, the benefits outweigh this cost.
Fixes <rdar://problem/14074822>.
llvm-svn: 184250
by ensuring DiagnoseUseOfDecl is called both on the found decl and the
decl being used (i.e the specialization in the case of member templates) whenever they are different.
Per the exchange captured in
http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20130610/081636.html
a more comprehensive fix that allows both decls to be passed into DiagnoseUseOfDecl is (or should be) forthcoming relatively soon.
llvm-svn: 184043
common function. The C++1y contextual implicit conversion rules themselves are
not yet implemented, however.
This also fixes a subtle bug where template instantiation context notes were
dropped for diagnostics coming from conversions for integral constant
expressions -- we were implicitly slicing a SemaDiagnosticBuilder into a
DiagnosticBuilder when producing these diagnostics, and losing their context
notes in the process.
llvm-svn: 182406
- References to ObjC bit-field ivars are bit-field lvalues;
fixes rdar://13794269, which got me started down this.
- Introduce Expr::refersToBitField, switch a couple users to
it where semantically important, and comment the difference
between this and the existing API.
- Discourage Expr::getBitField by making it a bit longer and
less general-sounding.
- Lock down on const_casts of bit-field gl-values until we
hear back from the committee as to whether they're allowed.
llvm-svn: 181252
to use. This makes very little difference right now (other than suppressing
follow-on errors in some cases), but will matter more once we support deduced
return types (we don't want expressions with undeduced return types in the
AST).
llvm-svn: 181107
It was being used correctly, but it is a very dangerous API to have around.
Instead, move the logic from the filtering to when we are deciding if we should
link two decls.
llvm-svn: 179523
We were assuming that any expression used as a converted constant
expression would either not have a folded constant value or would be
an integer, which is not the case for some ill-formed constant
expressions. Because converted constant expressions are only used
where integral values are expected, we can simply treat this as an
error path. If that ever changes, we'll need to widen the interface of
Sema::CheckConvertedConstantExpression() anyway.
llvm-svn: 179068
When two template decls with the same name are used in this diagnostic,
force them to print their qualified names. This changes the bad message of:
candidate template ignored: could not match 'array' against 'array'
to the better message of:
candidate template ignored: could not match 'NS2::array' against 'NS1::array'
llvm-svn: 179056
When Sema::RequireCompleteType() is given a class template
specialization type that then fails to instantiate, it returns
'true'. On subsequent invocations, it can return false. Make sure that
this difference doesn't change the result of
Sema::CompareReferenceRelationship, which is expected to remain stable
while we're checking an initialization sequence.
llvm-svn: 178088
Before this patch we would compute the linkage lazily and cache it. When the
AST was modified in ways that could change the value, we would invalidate the
cache.
That was fairly brittle, since any code could ask for the a linkage before
the correct value was available.
We should change the API to one where the linkage is computed explicitly and
trying to get it when it is not available asserts.
This patch is a first step in that direction. We still compute the linkage
lazily, but instead of invalidating a cache, we assert that the AST
modifications didn't change the result.
llvm-svn: 176999
This would error in C++ mode unless the variable also had a cv
qualifier.
e.g.
__attribute__((address_space(2))) float foo = 1.0f; would error but
__attribute__((address_space(2))) const float foo = 1.0f; would not.
llvm-svn: 176121
Weather we should give C language linkage to functions and variables with
internal linkage probably depends on how much code assumes it. The standard
says they should have no language linkage, but gcc and msvc assign them
C language linkage.
This commit removes the hack that was preventing the mangling on static
functions declare in extern C contexts. It is an experiment to see if we
can implement the rules in the standard.
If it turns out that many users depend on these functions and variables
having C language linkage, we should change isExternC instead and try
to convince the CWG to change the standard.
llvm-svn: 175937
I added hasCLanguageLinkage while fixing some language linkage bugs some
time ago so that I wouldn't have to check all users of isExternC. It turned
out to be a much longer detour than expected, but this patch finally
merges the two again. The isExternC function now implements just the
standard notion of having C language linkage.
llvm-svn: 175119
MarkMemberReferenced instead of marking functions referenced directly. An audit
of callers to MarkFunctionReferenced and DiagnoseUseOfDecl also caused a few
other changes:
* don't mark functions odr-used when considering them for an initialization
sequence. Do mark them referenced though.
* the function nominated by the cleanup attribute should be diagnosed.
* operator new/delete should be diagnosed when building a 'new' expression.
llvm-svn: 174951
have a direct mismatch between some component of the template and some
component of the argument. The diagnostic now says what the mismatch was, but
doesn't yet say which part of the template doesn't match.
llvm-svn: 174039
This patch moves hasCLanguageLinkage to be VarDecl and FunctionDecl methods
so that they can be used from SemaOverload.cpp and then fixes the logic
in Sema::IsOverload.
llvm-svn: 171193
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
array from a braced-init-list. There seems to be a core wording wart
here (it suggests we should be testing whether the elements of the init
list are implicitly convertible to the array element type, not whether
there is an implicit conversion sequence) but our prior behavior appears
to be a bug, not a deliberate effort to implement the standard as written.
llvm-svn: 169690
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
and we resolve it to a specific function based on the type which it's used as,
don't forget to mark it as referenced.
Fixes a regression introduced in r167514.
llvm-svn: 167918
I couldn't think of a way to make an operator() invalid without returning
earlier from this function other than making it static, so no new test.
llvm-svn: 167609