This patch adds a new descendant to the SymExpr hierarchy. This way, now
we can assign constraints to symbolic unary expressions. Only the unary
minus and bitwise negation are handled.
Differential Revision: https://reviews.llvm.org/D125318
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
This was originally committed in 277623f4d5
Reverted in f9ad1d1c77 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
Looks like lldb has some issues with this - somehow it causes lldb to
treat a "char[N]" type as an array of chars (prints them out
individually) but a "char [N]" is printed as a string. (even though the
DWARF doesn't have this string in it - it's something to do with the
string lldb generates for itself using clang)
This reverts commit 277623f4d5.
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
Retrieving the parameter location of functions was disabled because it
may causes crashes due to the fact that functions may have multiple
declarations and without definition it is difficult to ensure that
always the same declration is used. Now parameters are stored in
`ParamRegions` which are independent of the declaration of the function,
therefore the same parameters always have the same regions,
independently of the function declaration used actually. This allows us
to remove the limitation described above.
Differential Revision: https://reviews.llvm.org/D80286
Currently, parameters of functions without their definition present cannot
be represented as regions because it would be difficult to ensure that the
same declaration is used in every case. To overcome this, we split
`VarRegion` to two subclasses: `NonParamVarRegion` and `ParamVarRegion`.
The latter does not store the `Decl` of the parameter variable. Instead it
stores the index of the parameter which enables retrieving the actual
`Decl` every time using the function declaration of the stack frame. To
achieve this we also removed storing of `Decl` from `DeclRegion` and made
`getDecl()` pure virtual. The individual `Decl`s are stored in the
appropriate subclasses, such as `FieldRegion`, `ObjCIvarRegion` and the
newly introduced `NonParamVarRegion`.
Differential Revision: https://reviews.llvm.org/D80522
Exactly what it says on the tin! There is no reason I think not to have this.
Also, I added test files for checkers that emit warning under the wrong name.
Differential Revision: https://reviews.llvm.org/D76605
Since the range-based constraint manager (default) is weak in handling comparisons where symbols are on both sides it is wise to rearrange them to have symbols only on the left side. Thus e.g. A + n >= B + m becomes A - B >= m - n which enables the constraint manager to store a range m - n .. MAX_VALUE for the symbolic expression A - B. This can be used later to check whether e.g. A + k == B + l can be true, which is also rearranged to A - B == l - k so the constraint manager can check whether l - k is in the range (thus greater than or equal to m - n).
The restriction in this version is the the rearrangement happens only if both the symbols and the concrete integers are within the range [min/4 .. max/4] where min and max are the minimal and maximal values of their type.
The rearrangement is not enabled by default. It has to be enabled by using -analyzer-config aggressive-relational-comparison-simplification=true.
Co-author of this patch is Artem Dergachev (NoQ).
Differential Revision: https://reviews.llvm.org/D41938
llvm-svn: 329780
Properly perform destruction and lifetime extension of such temporaries.
C++ object-type return values of conservatively evaluated functions are now
represented as compound values of well-defined temporary object regions. The
function creates a region that represents the temporary object and will later
be used for destruction or materialization, invalidates it, and returns the
invalidated compound value of the object.
Differential Revision: https://reviews.llvm.org/D44131
llvm-svn: 327348
latter case, a temporary array object is materialized, and can be
lifetime-extended by binding a reference to the member access. Likewise, in an
array-to-pointer decay, an rvalue array is materialized before being converted
into a pointer.
This caused IR generation to stop treating file-scope array compound literals
as having static storage duration in some cases in C++; that has been rectified
by modeling such a compound literal as an lvalue. This also improves clang's
compatibility with GCC for those cases.
llvm-svn: 288654
Provide separate visitor templates for the three hierarchies, and also
the `FullSValVisitor' class, which is a union of all three visitors.
Additionally, add a particular example visitor, `SValExplainer', in order to
test the visitor templates. This visitor is capable of explaining the SVal,
SymExpr, or MemRegion in a natural language.
Compared to the reverted r257605, this fixes the test that used to fail
on some triples, and fixes build failure under -fmodules.
Differential Revision: http://reviews.llvm.org/D15448
llvm-svn: 257893
This reverts commit r257605.
The test fails on architectures that use unsigned int as size_t.
SymbolManager.h fails with compile errors on some platforms.
llvm-svn: 257608
Provide separate visitor templates for the three hierarchies, and also
the `FullSValVisitor' class, which is a union of all three visitors.
Additionally, add a particular example visitor, `SValExplainer', in order to
test the visitor templates. This visitor is capable of explaining the SVal,
SymExpr, or MemRegion in a natural language.
Differential Revision: http://reviews.llvm.org/D15448
llvm-svn: 257605