In preparation for supporting vector expansion.
Add an isPostTypeLegalization flag to makeLibCall(), because this
expansion relies on the legalized form using MERGE_VALUES. Drop
the corresponding variant of ExpandLibCall, which is no longer used.
Differential Revision: https://reviews.llvm.org/D58006
llvm-svn: 354226
Summary:
The SMULO/UMULO DAG nodes, when not directly supported by the target,
expand to a multiplication twice as wide. In case that the resulting
type is not legal, the legalizer cannot directly call the intrinsic
with the wide arguments; instead, it "pre-lowers" them by splitting
them in halves.
rL283203 made sure that on big endian targets, the legalizer passes
the argument halves in the correct order. It did not do the same
for the return value halves because the existing code used a hack;
it put an illegal type into DAG and hoped that nothing would break
and it would be correctly lowered elsewhere.
rL307207 fixed this, handling return value halves similar to how
argument handles are handled, but did not take big-endian targets
into account.
This commit fixes the expansion on big-endian targets, such as
the out-of-tree OR1K target.
Reviewers: eli.friedman, vadimcn
Subscribers: george-hopkins, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D45355
llvm-svn: 353854
In preparation for supporting vector expansion.
Also drop a variant of ExpandLibCall, of which the MULO expansions
were the only user.
llvm-svn: 353611
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55625
llvm-svn: 353059
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
I accidentally triggered this code while doing some experiments and it doesn't look lke it could possibly work.
It calls 'getNOT' on a node that should be a CondCode.
I think to do this right we would need to swap the branch target and the fallthrough target. But that's not easy to do. Or we could create an explicit SetCC and feed that into a new BR_CC?
llvm-svn: 351022
This patch takes some of the code from D49837 to allow us to enable ISD::ABS support for all SSE vector types.
Differential Revision: https://reviews.llvm.org/D56544
llvm-svn: 350998
Move existing rotation expansion code into TargetLowering and set it up for vectors as well.
Ideally this would share more of the funnel shift expansion, but we handle the shift amount modulo quite differently at the moment.
Begun removing x86 vector rotate custom lowering to use the expansion.
llvm-svn: 349025
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D54719
llvm-svn: 348912
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
Add an intrinsic that takes 2 integers and perform saturation subtraction on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D53783
llvm-svn: 345512
As noticed on D52965, the SINT_TO_FP i64 to f32 legalization code has been dead for years - protected by an assert.
Differential Revision: https://reviews.llvm.org/D53703
llvm-svn: 345290
As suggested on D52965, this patch moves the i64 to f64 UINT_TO_FP expansion code from LegalizeDAG into TargetLowering and makes it available to LegalizeVectorOps as well.
Not only does this help perform X86 lowering as a true vectorization instead of (partially vectorized) scalar conversions, it avoids the HADDPD op from the scalar code which can be slow on most targets.
The AVX512F does have the vcvtusi2sdq scalar operation but we don't unroll to use it as it seems to only help for the v2f64 case - otherwise the unrolling cost will certainly be too high. My feeling is that we should leave it to the vectorizers - and if it generates the vector UINT_TO_FP we should use it.
Differential Revision: https://reviews.llvm.org/D53649
llvm-svn: 345256
As suggested on D53258, this patch move the CTPOP expansion code from SelectionDAGLegalize to TargetLowering to allow it to be reused by the VectorLegalizer.
Proper vector support will be added by D53258.
llvm-svn: 345066
As suggested on D53258, this patch shares common CTLZ expansion code between VectorLegalizer and SelectionDAGLegalize by putting it in TargetLowering.
Extension to D53474
llvm-svn: 345060
As suggested on D53258, this patch demonstrates sharing common CTTZ expansion code between VectorLegalizer and SelectionDAGLegalize by putting it in TargetLowering.
I intend to move CTLZ and (scalar) CTPOP over as well and then update D53258 accordingly.
Differential Revision: https://reviews.llvm.org/D53474
llvm-svn: 345039
Add an intrinsic that takes 2 integers and perform unsigned saturation
addition on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D53340
llvm-svn: 344971
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.
There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.
llvm-svn: 344914
Add an intrinsic that takes 2 integers and perform saturation addition on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D53053
llvm-svn: 344629
The final stage of CTPOP expansion (v = (v * 0x01010101...) >> (Len - 8)) is completely pointless for the byte (Len = 8) case as it reduces to (v = (v * 0x01...) >> 0), but annoyingly this doesn't always get optimized away.
Found while investigating generic vector CTPOP expansion (PR32655).
llvm-svn: 344477
The CTPOP case has been changed from VT.getSizeInBits to VT.getScalarSizeInBits - but this fits in with future work for vector support (PR32655) and doesn't affect any current (scalar) uses.
llvm-svn: 344461
There is one remnant - AVX1 custom splitting of 256-bit vectors - which is due to a regression where the X86ISD::ANDNP is still performed as a YMM.
I've also tightened the CTLZ or CTPOP lowering in SelectionDAGLegalize::ExpandBitCount to require a legal CTLZ - it doesn't affect existing users and fixes an issue with AVX512 codegen.
llvm-svn: 344457
Generalize SelectionDAGLegalize's CTLZ expansion to handle vectors - lets VectorLegalizer::ExpandCTLZ to just pass the expansion on instead of repeating the same codegen.
llvm-svn: 344349
This is where we legalize gather and masked load so this is consistent.
Since these ops are always on vectors I've chosen to go with LegalizeDAG since that's what we do for other vector only ops like BUILD_VECTOR, VECTOR_SHUFFLE, etc. The ScalarizeMaskedMemIntrinsic pass should take care of scalarizing these before SelectionDAG so hopefully we don't need to worry about illegally typed scalar ops being emitted in the legalizing. If we did we would need to do this in LegalizeVectorOps so we could get the second type legalization that runs between LegalizeVectorOps and LegalizeDAG.
llvm-svn: 343947
This is a follow-up suggested in D51630 and originally proposed as an IR transform in D49040.
Copying the motivational statement by @evandro from that patch:
"This transformation helps some benchmarks in SPEC CPU2000 and CPU2006, such as 188.ammp,
447.dealII, 453.povray, and especially 300.twolf, as well as some proprietary benchmarks.
Otherwise, no regressions on x86-64 or A64."
I'm proposing to add only the minimum support for a DAG node here. Since we don't have an
LLVM IR intrinsic for cbrt, and there are no other DAG ways to create a FCBRT node yet, I
don't think we need to worry about DAG builder, legalization, a strict variant, etc. We
should be able to expand as needed when adding more functionality/transforms. For reference,
these are transform suggestions currently listed in SimplifyLibCalls.cpp:
// * cbrt(expN(X)) -> expN(x/3)
// * cbrt(sqrt(x)) -> pow(x,1/6)
// * cbrt(cbrt(x)) -> pow(x,1/9)
Also, given that we bail out on long double for now, there should not be any logical
differences between platforms (unless there's some platform out there that has pow()
but not cbrt()).
Differential Revision: https://reviews.llvm.org/D51753
llvm-svn: 342348
The inline sequence is very long (about 70 bytes on Thumb1), so it's
not really a good idea to inline it, especially when optimizing for
size.
Differential Revision: https://reviews.llvm.org/D47917
llvm-svn: 340458
In expansion of FCOPYSIGN, the shift node is missing when the two
operands of FCOPYSIGN are of the same size. We should always generate
shift node (if the required shift bit is not zero) to put the sign
bit into the right position, regardless of the size of underlying
types.
Differential Revision: https://reviews.llvm.org/D49973
llvm-svn: 338665
Modify ExpandStrictFPOp(...) to handle nodes that have scalar
operands.
Also, add a Strict FMA test and do some other light cleanup in the
Strict FP code.
Differential Revision: https://reviews.llvm.org/D48149
llvm-svn: 334863
Implement default legalization of rotates: either in terms of the rotation
in the opposite direction (if legal), or in terms of shifts and ors.
Implement generating of rotate instructions for Hexagon. Hexagon only
supports rotates by an immediate value, so implement custom lowering of
ROTL/ROTR on Hexagon. If a rotate is not legal, use the default expansion.
Differential Revision: https://reviews.llvm.org/D47725
llvm-svn: 334497
Summary: It has been deprecated in favor of SETCCCARRY for a year now and isn't used by any in tree backend.
Reviewers: efriedma, craig.topper, dblaikie, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47685
llvm-svn: 333939
Summary:
SelectionDAGLegalize::ExpandNode() inserts an ISD::MUL when lowering a
BR_JT opcode. While many backends optimize this multiply into a shift, e.g.
the MIPS backend currently always lowers this into a sequence of
load-immediate+multiply+mflo in MipsSETargetLowering::lowerMulDiv().
I initially changed the multiply to a shift in the MIPS backend but it
turns out that would not have handled the MIPSR6 case and was a lot more
code than doing it in LegalizeDAG.
I believe performing this simple optimization in LegalizeDAG instead of
each individual backend is the better solution since this also fixes other
backeds such as MSP430 which calls the multiply runtime function
__mspabi_mpyi without this patch.
Reviewers: sdardis, atanasyan, pftbest, asl
Reviewed By: sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45760
llvm-svn: 332439
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
Summary:
Currently when expanding a SETCC node into a SELECT_CC, LLVM uses
an incorrect type for determining BooleanContent of the result. This
patch fixes the issue.
Fixes PR36079.
Reviewers: rogfer01, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43282
llvm-svn: 325325
Armv8.1-A added an atomic load-clear instruction (which performs bitwise
and with the complement of it's operand), but not a load-and
instruction. Our current code-generation for atomic load-and always
inserts an MVN instruction to invert its argument, even if it could be
folded into a constant or another instruction.
This adds lowering early in selection DAG to convert a load-and
operation into an xor with -1 and a load-clear, allowing the normal DAG
optimisations to work on it.
To do this, I've had to add a new ISD opcode, ATOMIC_LOAD_CLR. I don't
see any easy way to do this with an AArch64-specific ISD node, because
the code-generation for atomic operations assumes the SDNodes are of
type AtomicSDNode.
I've left the old tablegen patterns in because they are still needed for
global isel.
Differential revision: https://reviews.llvm.org/D42478
llvm-svn: 324908
PR36061 showed that during the expansion of ISD::FPOWI, that there
was an incorrect zero extension of the integer argument which for
MIPS64 would then give incorrect results. Address this with the
existing mechanism for correcting sign extensions.
This resolves PR36061.
Thanks to James Cowgill for reporting the issue!
Reviewers: atanasyan, hfinkel
Differential Revision: https://reviews.llvm.org/D42537
llvm-svn: 323781
The code wasn't zero-extending correctly, so the comparison could
spuriously fail.
Adds some AArch64 tests to cover this case.
Inspired by D41791.
Differential Revision: https://reviews.llvm.org/D41798
llvm-svn: 322767
Ingredients in this patch:
1. Add HANDLE_LIBCALL defs for finite mathlib functions that correspond to LLVM intrinsics.
2. Plumbing to send TargetLibraryInfo down to SelectionDAGLegalize.
3. Relaxed math and library checking in SelectionDAGLegalize::ConvertNodeToLibcall() to choose finite libcalls.
There was a bug about determining the availability of the finite calls that should be fixed with:
rL322010
Not in this patch:
This doesn't resolve the question/bug of clang creating the intrinsic IR in the first place.
There's likely follow-up work needed to support the long double variants better.
There's room for improvement to reduce the code duplication.
Create finite calls that don't originate from a corresponding intrinsic or DAG node?
Differential Revision: https://reviews.llvm.org/D41338
llvm-svn: 322087
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
This fixes a bug where we'd crash given code like the test-case from
https://bugs.llvm.org/show_bug.cgi?id=30792 . Instead, we let the
offending clobber silently slide through.
This doesn't fully fix said bug, since the assembler will still complain
the moment it sees a crypto/fp/vector op, and we still don't diagnose
calls that require vector regs.
Differential Revision: https://reviews.llvm.org/D39030
llvm-svn: 316374
This adds some more debug messages to the type legalizer and functions
like PromoteNode, ExpandNode, ExpandLibCall in an attempt to make
the debug messages a little bit more informative and useful.
Differential Revision: https://reviews.llvm.org/D38450
llvm-svn: 314773
When expanding a BRCOND into a BR_CC, do not create an AND 1
if one already exists.
Review: D36705
Patch by Joel Galenson <jgalenson@google.com>
llvm-svn: 311447
If we are lowering a libcall after legalization, we'll split the return type into a pair of legal values.
Patch by Jatin Bhateja and Eli Friedman.
Differential Revision: https://reviews.llvm.org/D34240
llvm-svn: 307207
We were incorrectly sign extending into the high word (as you would for
SMULO) when legalizing UMULO in terms of a wider full multiplication.
Patch by James Duley.
llvm-svn: 305800
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
Summary:
During DAG legalization loop in SelectionDAG::Legalize(),
bookkeeping of the SDNodes that were already legalized is implemented
with SmallPtrSet (LegalizedNodes). This kind of set stores only pointers
to objects, not the objects themselves. Unfortunately, if SDNode is
deleted during legalization for some reason, LegalizedNodes set is not
informed about this fact. This wouldn’t be so bad, if SelectionDAG wouldn’t reuse
space deallocated after deletion of unused nodes, for creation of new
ones. Because of this, new nodes, created during legalization often can
have pointers identical to ones that have been previously legalized,
added to the LegalizedNodes set, and deleted afterwards. This in turn
causes, that newly created nodes, sharing the same pointer as deleted
old ones, are present in LegalizedNodes *already at the moment of
creation*, so we never call Legalize on them.
The fix facilitates the fact, that DAG notifies listeners about each
modification. I have registered DAGNodeDeletedListener inside
SelectionDAG::Legalize, with a callback function that removes any
pointer of any deleted SDNode from the LegalizedNodes set. With this
modification, LegalizeNodes set does not contain pointers to nodes that
were deleted, so newly created nodes can always be inserted to it, even
if they share pointers with old deleted nodes.
Patch by pawel.szczerbuk@intel.com
The issue this patch addresses causes failures in an out-of-tree target,
and i was not able to create a reproducer for an in-tree target, hence
there is no test-case.
Reviewers: delena, spatel, RKSimon, hfinkel, davide, qcolombet
Reviewed By: delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33891
llvm-svn: 305084
This code was compensating for FPOWI defaulting to Legal and many targets not changing it to Expand. This was fixed in r304215 to default to Expand so this special handling should no longer be necessary.
llvm-svn: 304221
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
Updates the MSP430 target to generate EABI-compatible libcall names.
As a byproduct, adjusts the hardware multiplier options available in
the MSP430 target, adds support for promotion of the ISD::MUL operation
for 8-bit integers, and correctly marks R11 as used by call instructions.
Patch by Andrew Wygle.
Differential Revision: https://reviews.llvm.org/D32676
llvm-svn: 302820
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
For targets that don't have ISD::MULHS or ISD::SMUL_LOHI for the type
and the double width type is illegal, then the two operands are
sign extended to twice their size then multiplied to check for overflow.
The extended upper halves were mismatched causing an incorrect result.
This fixes the mismatch.
A test was added for ARM V6-M where the bug was detected.
Patch by James Duley.
Differential Revision: https://reviews.llvm.org/D31807
llvm-svn: 301404
This reverts commit r301105, 4, 3 and 1, as a follow up of the previous
revert, which broke even more bots.
For reference:
Revert "[APInt] Use operator<<= where possible. NFC"
Revert "[APInt] Use operator<<= instead of shl where possible. NFC"
Revert "[APInt] Use ashInPlace where possible."
PR32754.
llvm-svn: 301111
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
This is more efficient by itself. But this is prep for a future patch that may remove APInt::Or while making operator| support rvalue references similar to add/sub.
llvm-svn: 296981
If a vector index is out of bounds, the result is supposed to be
undefined but is not undefined behavior. Change the legalization
for indexing the vector on the stack so that an out of bounds
index does not create an out of bounds memory access.
llvm-svn: 291604
Summary:
Most targets set the action for these nodes to Expand even though there
isn't actually any code for them in ExpandNode. Instead, targets simply
relied on the fact that no code generates these nodes as long as the
nodes aren't legal or custom.
However, generating these nodes can be useful e.g. for divide-by-constant
in wider integer types.
Expand of [US]MUL_LOHI will use MULH[US] when legal or custom, and
a sequence of half-width multiplications otherwise. Promote uses a wider
multiply.
This patch intends to not change the generated code, but indirect effects
are possible since expansions/promotions that were previously done in
DAGCombine may now be done in LegalizeDAG.
See D24822 for a change that actually uses the new expansion.
Reviewers: spatel, bkramer, venkatra, efriedma, hfinkel, ast, nadav, tstellarAMD
Subscribers: arsenm, jyknight, nemanjai, wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D24956
llvm-svn: 289050
On some platforms (like MSP430) the second element of the result
structure for SMULO/UMULO may have a shorter type than the one
returned by SetCC. We need to truncate it to the right type, or
else some incorrect code may be generated later on.
This fixes issue https://github.com/rust-lang/rust/issues/37829
Patch by Vadzim Dambrouski!
Differential Revision: https://reviews.llvm.org/D27154
llvm-svn: 288857
For 64bit ABIs it is common practice to use relative Jump Tables with
potentially different relocation bases. As the logic for the jump table
itself doesn't depend on the relocation base, make it easier for targets
to use the generic logic. Start by dropping the now redundant MIPS logic.
Differential Revision: https://reviews.llvm.org/D26578
llvm-svn: 286951
Summary:
AMDGPU will need this one i16 is added as a legal type. This is tested by:
test/CodeGen/AMDGPU/sdiv.ll
test/CodeGen/AMDGPU/sdivrem24.ll
test/CodeGen/AMDGPU/udiv.ll
test/CodeGen/AMDGPU/udivrem24.ll
Reviewers: bogner, efriedma
Subscribers: efriedma, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D25699
llvm-svn: 285199
Use mask and negate for legalization of i1 source type with SIGN_EXTEND_INREG.
With the mask, this should be no worse than 2 shifts. The mask can be eliminated
in some cases, so that should be better than 2 shifts.
This change exposed some missing folds related to negation:
https://reviews.llvm.org/rL284239https://reviews.llvm.org/rL284395
There may be others, so please let me know if you see any regressions.
Differential Revision: https://reviews.llvm.org/D25485
llvm-svn: 284611
Summary:
This operation is promoted the same way was ISD::BSWAP. This will
prevent a regression in test/Target/AMDGOU/bitreverse.ll when i16
support is implemented.
Reviewers: bogner, hfinkel
Subscribers: hfinkel, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D25202
llvm-svn: 284163
Summary: We need a new LLVM intrinsic to implement MS _AddressOfReturnAddress builtin on 64-bit Windows.
Reviewers: majnemer, rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25293
llvm-svn: 284061
The SMULO/UMULO DAG nodes, when not directly supported by the target,
expand to a multiplication twice as wide. In case that the resulting
type is not legal, an __mul?i3 intrinsic is used. Since the type is
not legal, the legalizer cannot directly call the intrinsic with
the wide arguments; instead, it "pre-lowers" them by splitting them
in halves.
The "pre-lowering" code in essence made assumptions about
the calling convention, specifically that i(N*2) values will be
split into two iN values and passed in consecutive registers in
little-endian order. This, naturally, breaks on a big-endian system,
such as our OR1K out-of-tree backend.
Thanks to James Miller <james@aatch.net> for help in debugging.
Differential Revision: https://reviews.llvm.org/D25223
llvm-svn: 283203
LLVM has an @llvm.eh.dwarf.cfa intrinsic, used to lower the GCC-compatible
__builtin_dwarf_cfa() builtin. As pointed out in PR26761, this is currently
broken on PowerPC (and likely on ARM as well). Currently, @llvm.eh.dwarf.cfa is
lowered using:
ADD(FRAMEADDR, FRAME_TO_ARGS_OFFSET)
where FRAME_TO_ARGS_OFFSET defaults to the constant zero. On x86,
FRAME_TO_ARGS_OFFSET is lowered to 2*SlotSize. This setup, however, does not
work for PowerPC. Because of the way that the stack layout works, the canonical
frame address is not exactly (FRAMEADDR + FRAME_TO_ARGS_OFFSET) on PowerPC
(there is a lower save-area offset as well), so it is not just a matter of
implementing FRAME_TO_ARGS_OFFSET for PowerPC (unless we redefine its
semantics -- We can do that, since it is currently used only for
@llvm.eh.dwarf.cfa lowering, but the better to directly lower the CFA construct
itself (since it can be easily represented as a fixed-offset FrameIndex)). Mips
currently does this, but by using a custom lowering for ADD that specifically
recognizes the (FRAMEADDR, FRAME_TO_ARGS_OFFSET) pattern.
This change introduces a ISD::EH_DWARF_CFA node, which by default expands using
the existing logic, but can be directly lowered by the target. Mips is updated
to use this method (which simplifies its implementation, and I suspect makes it
more robust), and updates PowerPC to do the same.
Fixes PR26761.
Differential Revision: https://reviews.llvm.org/D24038
llvm-svn: 280350
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
When expanding FP constants, we attempt to shrink doubles to floats and perform an extending load.
However, on SystemZ, and possibly on other targets (I've only confirmed the problem on SystemZ), the FP extending load instruction may convert SNaN into QNaN, or may cause an exception. So in the general case, we would still like to shrink FP constants, but SNaNs should be left as doubles.
Differential Revision: https://reviews.llvm.org/D22685
llvm-svn: 277602
An extension of D19978, this patch replaces the default BITREVERSE evaluation of individual bit masks+shifts with block mask+shifts when we have integer elements of power-of-2 bits in size.
After calling BSWAP to reverse the order of the constituent bytes (which typically follows a similar approach), every neighbouring 4-bits, 2-bits and finally 1-bit pairs are masked off and swapped over with shifts.
In doing so we can significantly reduce the number of operations required.
Differential Revision: https://reviews.llvm.org/D21578
llvm-svn: 276432
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
For the most part this simplifies all callers. There were two places in X86 that needed an explicit makeArrayRef to shorten a statically sized array.
llvm-svn: 274337
I think this converts all the simple cases that really just care about
the generated code being position independent or not. The remaining
uses are a bit more complicated and are checking things like "is this
a library or executable" or "can this symbol be preempted".
llvm-svn: 274055
Recommiting after correcting over-eager Debug Value transfer fixing PR28270.
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 273585
Recommiting after fixing over-aggressive assertion
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 273456
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
Summary:
canCombineSinCosLibcall() would previously combine sin+cos into sincos for
GNUX32/GNUEABI/GNUEABIHF regardless of whether UnsafeFPMath were set or not.
However, GNU would only combine them for UnsafeFPMath because sincos does not
set errno like sin and cos do. It seems likely that this is an oversight.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D21431
llvm-svn: 273259
[DAG] Previously debug values would transfer debuginfo for the selected
start node for a replacement which allows for debug to be dropped.
Push debug value transfer to occur with node/value replacement in
SelectionDAG, remove now extraneous transfers of debug values.
This refixes PR9817 which was being incompletely checked in the
testsuite.
Reviewers: jyknight
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D21037
llvm-svn: 272792
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Currently, SelectionDAG assumes 8/16-bit cmpxchg returns either a sign
extended result, or a zero extended result. SystemZ takes a third
option by returning junk in the high bits (rotated contents of the other
bytes in the memory word). In that case, don't use Assert*ext, and
zero-extend the result ourselves if a comparison is needed.
Differential Revision: http://reviews.llvm.org/D19800
llvm-svn: 269075
When custom lowered, this is not called if the store is custom
lowered. Move it to be a utility function so targets can
easily expand unaligned accesses when custom lowering.
llvm-svn: 267029
For the same reason as the corresponding load change.
Note that ExpandStore is completely broken for non-byte sized element
vector stores, but preserve the current broken behavior which has tests
for it. The behavior should be the same, but now introduces a new typed
store that is incorrectly split later rather than doing it directly.
llvm-svn: 264928
On AMDGPU we want to be able to promote i64/f64 loads to v2i32.
If the access is unaligned, this would conclude that since i64 is legal,
it would convert it back to i64 and there is an endless legalization
loop.
Extract the logic for scalarizing the load into a new TargetLowering
function, where this can also replace the custom function AMDGPU
has for this.
llvm-svn: 264927
When merging stores in DAGCombiner, add check to ensure that no
dependenices exist that would cause the construction of a cycle in our
DAG. This may happen if one store has a data dependence on another
instruction (e.g. a load) which itself has a (chain) dependence on
another store being merged. These stores cannot be merged safely and
doing so results in a cycle that is discovered in LegalizeDAG.
This test is only done in cases where Antialias analysis is used (UseAA)
as non-AA store merge candidates will be merged logically after all
loads which have been checked to not alias.
Reviewers: ahatanak, spatel, niravd, arsenm, hfinkel, tstellarAMD, jyknight
Subscribers: llvm-commits, tberghammer, danalbert, srhines
Differential Revision: http://reviews.llvm.org/D18336
llvm-svn: 264461
If the operation's type has been promoted during type legalization, we
need to account for the fact that the high bits of the comparison
operand are likely unspecified.
The LHS is usually zero-extended, but MIPS sign extends it, so we have
to be slightly careful.
Patch by Simon Dardis.
llvm-svn: 264296
We were just completely ignoring the types when determining whether we could
safely emit a libcall as a tail call. This is clearly wrong.
Theoretically, we could dig deeper looking for incidental matches (much like
the generic code in Analysis.cpp does), but it's probably not worth it for the
few libcalls that exist.
llvm-svn: 264084
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
Since r230276, we support an improved legalization for f64->f16,
which goes through a temporary f32, improving codegen when
f32->f16 is legal but not f64->f16. This requires unsafe-fp-math.
However, that legalization assumed that the second step, producing
a pseudo-softened f16, had type i16. That's not true on targets
with illegal i16, such as ARM.
Use the initial f64->f16 result type instead.
llvm-svn: 257794
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
llvm-svn: 255114
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
llvm-svn: 254653
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
llvm-svn: 254061
Richard Trieu noted that UBSan detected an overflowing shift, and the obvious fix caused a crash.
What was happening was that the shiftee (1U) was indeed too small for the possible range of shifts it had to handle, but also we were using "VT.getSizeInBits()" to get the maximum type bitwidth, but we wanted "VT.getScalarSizeInBits()" to get the vector lane size instead of the entire vector size.
Use an APInt for the shift and VT.getScalarSizeInBits().
llvm-svn: 253023
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
llvm-svn: 252878
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
llvm-svn: 252839
This allows avoiding the default Expand behavior which
introduces stack usage. Bitcast the scalar and replace
the missing elements with undef.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
llvm-svn: 252632
This is for AMDGPU to implement v2i64 extract as extract of
half of a v4i32.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
llvm-svn: 252630
This will be used in future commits for AMDGPU to promote
operations on i64 vectors into operations on 32-bit vector
components.
This will be used / tested in future AMDGPU commits.
llvm-svn: 250945
Summary:
TargetLoweringBase::Expand is defined as "Try to expand this to other ops,
otherwise use a libcall." For ISD::UDIV and ISD::SDIV, the choice between
the two possibilities was defined in a rather convoluted way:
- if DIVREM is legal, expand to DIVREM
- if DIVREM has a custom lowering, expand to DIVREM
- if DIVREM libcall is defined and a remainder from the same division is
computed elsewhere, expand to a DIVREM libcall
- else, expand to a DIV libcall
This had the undesirable effect that if both DIV and DIVREM are implemented
as libcalls, then ISD::UDIV and ISD::SDIV are expanded to the heavier DIVREM
libcall, even when the remainder isn't used.
The new code adds a new LegalizeAction, TargetLoweringBase::LibCall, so that
backends can directly control whether they prefer an expansion or a conversion
to a libcall. This makes the generic lowering code even more generic,
allowing its reuse in a wider range of target-specific configurations.
The useful effect is that ARM backend will now generate a call
to __aeabi_{i,u}div rather than __aeabi_{i,u}divmod in cases where
it doesn't need the remainder. There's no functional change outside
the ARM backend.
Reviewers: t.p.northover, rengolin
Subscribers: t.p.northover, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13862
llvm-svn: 250826
Summary:
In addition to moving the code over, this patch amends the DIV,REM -> DIVREM
combining to run on all affected nodes at once: if the nodes are converted
to DIVREM one at a time, then the resulting DIVREM may get legalized by the
backend into something target-specific that we won't be able to recognize
and correlate with the remaining nodes.
The motivation is to "prepare terrain" for D13862: when we set DIV and REM
to be legalized to libcalls, instead of the DIVREM, we otherwise lose the
ability to combine them together. To prevent this, we need to take the
DIV,REM -> DIVREM combining out of the lowering stage.
Reviewers: RKSimon, eli.friedman, rengolin
Subscribers: john.brawn, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13733
llvm-svn: 250825
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
Currently this hits an assert that extload should
always be supported, which assumes integer extloads.
This moves a hack out of SI's argument lowering and
is covered by existing tests.
llvm-svn: 247113
For targets that didn't support this, this will let us respect the
langref instead of failing to select.
Note that we don't need to change the 32-bit x86/PPC lowerings (to
account for the result type/# difference) because they're both
custom and bypass type legalization.
llvm-svn: 246258
Summary:
This change makes the variable argument intrinsics, `llvm.va_start` and
`llvm.va_copy`, and the `va_arg` instruction behave as they do on Windows
inside a `CallingConv::X86_64_Win64` function. It's needed for a Clang patch
I have to add support for GCC's `__builtin_ms_va_list` constructs.
Reviewers: nadav, asl, eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1622
llvm-svn: 245990
Now that we can properly promote mismatched FCOPYSIGNs (r244858), we
can mark the FP_ROUND on the result as truncating, to expose folding.
FCOPYSIGN doesn't change anything but the sign bit, so
(fp_round (fcopysign (fpext a), b))
is equivalent to (modulo the sign bit):
(fp_round (fpext a))
which is a no-op.
llvm-svn: 244862
We don't care about its type, and there's even a combine that'll fold
away the FP_EXTEND if we let it run. However, until it does, we'll have
something broken like:
(f32 (fp_extend (f64 v)))
Scalar f16 follow-up to r243924.
llvm-svn: 244858
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
On the code path in ExpandUnalignedLoad which expands an unaligned vector/fp
value in terms of a legal integer load of the same size, the ChainResult needs
to be the chain result of the integer load.
No in-tree test case is currently available.
Patch by Jan Hranac!
llvm-svn: 243956
Making allowableAlignment() more accessible was suggested as a predecessor patch
for D10662, so I've pulled it into TargetLowering. This let's us remove 4 instances
of duplicate logic in LegalizeDAG.
There's a subtle functional change in the implementation: the existing
allowableAlignment() code was using getPrefTypeAlignment() when checking
alignment with the DataLayout and assumed that was fast. In this implementation,
we use getABITypeAlignment() and assume that is fast. See the TODO comment or the
discussion in the Phab review for future improvements in this implementation
(don't use the data layout at all).
There are no regression test changes from this difference, and I'm not sure how to
expose it via a test. I think we actually do want to provide the 'Fast' param when
checking this from DAGCombiner::MergeConsecutiveStores(). Ie, we shouldn't merge
stores if the new stores are not going to be fast. But that change will require
fixing allowsMisalignedMemoryAccess() overrides as noted in D10662.
Differential Revision: http://reviews.llvm.org/D10905
llvm-svn: 243549
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp. The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.
To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.
Differential Revision: http://reviews.llvm.org/D9313
llvm-svn: 242481
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
llvm-svn: 242107
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
SelectionDAG itself is not invoking directly the DataLayout in the
TargetMachine, but the "TargetLowering" class is still using it. I'll
address it in a following commit.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11000
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241618
The body of the loops here only contained asserts. This triggered an unused variable
warning on release builds and -Werror on the bots.
llvm-svn: 240819
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This adds new SDNodes for signed/unsigned min/max. These nodes are built from
select/icmp pairs matched at SDAGBuilder stage.
This patch adds the nodes, as well as legalization support and sets them to
be "expand" for all targets.
NFC for now; this will be tested when I switch AArch64 to using these new
nodes.
llvm-svn: 237423
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977