D25618 added a method to verify the instruction predicates for an
emitted instruction, through verifyInstructionPredicates added into
<Target>MCCodeEmitter::encodeInstruction. This is a very useful idea,
but the implementation inside MCCodeEmitter made it only fire for object
files, not assembly which most of the llvm test suite uses.
This patch moves the code into the <Target>_MC::verifyInstructionPredicates
method, inside the InstrInfo. The allows it to be called from other
places, such as in this patch where it is called from the
<Target>AsmPrinter::emitInstruction methods which should trigger for
both assembly and object files. It can also be called from other places
such as verifyInstruction, but that is not done here (it tends to catch
errors earlier, but in reality just shows all the mir tests that have
incorrect feature predicates). The interface was also simplified
slightly, moving computeAvailableFeatures into the function so that it
does not need to be called externally.
The ARM, AMDGPU (but not R600), AVR, Mips and X86 backends all currently
show errors in the test-suite, so have been disabled with FIXME
comments.
Recommitted with some fixes for the leftover MCII variables in release
builds.
Differential Revision: https://reviews.llvm.org/D129506
This reverts commit e2fb8c0f4b as it does
not build for Release builds, and some buildbots are giving more warning
than I saw locally. Reverting to fix those issues.
D25618 added a method to verify the instruction predicates for an
emitted instruction, through verifyInstructionPredicates added into
<Target>MCCodeEmitter::encodeInstruction. This is a very useful idea,
but the implementation inside MCCodeEmitter made it only fire for object
files, not assembly which most of the llvm test suite uses.
This patch moves the code into the <Target>_MC::verifyInstructionPredicates
method, inside the InstrInfo. The allows it to be called from other
places, such as in this patch where it is called from the
<Target>AsmPrinter::emitInstruction methods which should trigger for
both assembly and object files. It can also be called from other places
such as verifyInstruction, but that is not done here (it tends to catch
errors earlier, but in reality just shows all the mir tests that have
incorrect feature predicates). The interface was also simplified
slightly, moving computeAvailableFeatures into the function so that it
does not need to be called externally.
The ARM, AMDGPU (but not R600), AVR, Mips and X86 backends all currently
show errors in the test-suite, so have been disabled with FIXME
comments.
Differential Revision: https://reviews.llvm.org/D129506
When expanding a MOVW (16-bit copy) to two MOVs (8-bit copy), the
lower byte always comes first. This is incorrect for corner cases like
'$r24r23 -> $r25r24', in which the higher byte copy should come first.
Current patch fixes that bug as recorded at
https://github.com/rust-lang/rust/issues/98167
Reviewed By: benshi001
Differential Revision: https://reviews.llvm.org/D128588
MIR support is totally unusable for AMDGPU without this, since the set
of reserved registers is set from fields here.
Add a clone method to MachineFunctionInfo. This is a subtle variant of
the copy constructor that is required if there are any MIR constructs
that use pointers. Specifically, at minimum fields that reference
MachineBasicBlocks or the MachineFunction need to be adjusted to the
values in the new function.
The name `MCFixedLenDisassembler.h` is out of date after D120958.
Rename it as `MCDecoderOps.h` to reflect the change.
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D124987
Currently, STDSPQRr and STDWSPQRr are expanded only during
AVRFrameLowering - this means that if any of those instructions happen
to appear _outside_ of the typical FrameSetup / FrameDestroy
context, they wouldn't get substituted, eventually leading to a crash:
```
LLVM ERROR: Not supported instr: <MCInst XXX <MCOperand Reg:1>
<MCOperand Imm:15> <MCOperand Reg:53>>
```
This commit fixes this issue by moving expansion of those two opcodes
into AVRExpandPseudo.
This bug was originally discovered due to the Rust compiler_builtins
library. Its 0.1.37 release contained a 128-bit software
division/remainder routine that exercised this buggy branch in the code.
Reviewed By: benshi001
Differential Revision: https://reviews.llvm.org/D123528
This commit contains a refactoring that merges AVRRelaxMemOperations
into AVRExpandPseudoInsts, so that we have a single place in code that
expands the STDWPtrQRr opcode.
Seizing the day, I've also fixed a couple of potential bugs with our
previous implementation (e.g. when the destination register was killed,
the previous implementation would try to .addDef() that killed
register, crashing LLVM in the process - that's fixed now, as proved by
the test).
Reviewed By: benshi001
Differential Revision: https://reviews.llvm.org/D122533
All LLVM backends use MCDisassembler as a base class for their
instruction decoders. Use "const MCDisassembler *" for the decoder
instead of "const void *". Remove unnecessary static casts.
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D122245
The 'call' (long call) instruction is available on avr3 and above,
and devices in avr2 and avr25 should use the 'rcall' (short call)
instruction for function calls.
Reviewed By: aykevl, dylanmckay
Differential Revision: https://reviews.llvm.org/D121539
An i8 argument should only cost 1 byte on the stack. This is
compatible with avr-gcc.
There are also more test cases (of calling convention) are added.
Reviewed By: aykevl, dylanmckay
Differential Revision: https://reviews.llvm.org/D121767
Most notably, Pass.h is no longer included by TargetMachine.h
before: 1063570306
after: 1063332844
Differential Revision: https://reviews.llvm.org/D121168
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
Apparently GCC 5.4 (a supported compiler) has a bug where it will
use the "MachineInstr &MI" defined by the range-based for loop
to evaluate the for loop expression. Pick a different variable
name to avoid this.
This patch fixes the atomicrmw result value to be the value before the
operation instead of the value after the operation. This was a bug, left
as a FIXME in the code (see https://reviews.llvm.org/D97127).
From the LangRef:
> The contents of memory at the location specified by the <pointer>
> operand are atomically read, modified, and written back. The original
> value at the location is returned.
Doing this expansion early allows the register allocator to arrange
registers in such a way that commutable operations are simply swapped
around as needed, which results in shorter code while still being
correct.
Differential Revision: https://reviews.llvm.org/D117725
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
The register R1 is defined to have the constant value 0 in the avr-gcc
calling convention (which we follow). Unfortunately, we don't really
make use of it. This patch replaces `LDI 0` instructions with a copy
from R1.
This reduces code size: my AVR build of compiler-rt goes from 50660 to
50240 bytes of code size, which is a 0.8% reduction. Presumably it will
also improve execution speed, although I didn't measure this.
Differential Revision: https://reviews.llvm.org/D117425
Background: https://github.com/avr-rust/rust-legacy-fork/issues/126
In short, this workaround was introduced to fix a "ran out of registers
during regalloc" issue. The root cause has since been fixed in
https://reviews.llvm.org/D54218 so this workaround can be removed.
There is one test that changes a little bit, removing a single
instruction. I also compiled compiler-rt before and after this patch but
didn't see a difference. So presumably the impact is very low. Still,
it's nice to be able to remove such a workaround.
Differential Revision: https://reviews.llvm.org/D117831
There is no reason to do this: it's a scratch register and can therefore
hold any arbitrary value. And because it is in an interrupt, this code
is performance critical so it should be as short as possible.
I believe r0 was cleared because of the following:
1. There used to be a bug that the cleared register was r0, not r1 as
it should have been.
2. This was fixed in https://reviews.llvm.org/D99467, but left the code
to clear r0.
This patch completes D99467 by removing the `clr r0` instruction.
Differential Revision: https://reviews.llvm.org/D116756
I have matched the RISCV backend, which only uses the interrupt save
list in getCalleeSavedRegs, _not_ in getCallPreservedMask. I don't know
the details of these two methods, but with it, the correct amount of
registers is saved and restored.
Without this patch, practically all interrupt handlers that call a
function will miscompile.
I have added a test to verify this behavior. I've also added a very
simple test to verify that more normal interrupt operations (in this
case, incrementing a global value) behave as expected.
Differential Revision: https://reviews.llvm.org/D116551
I think this pass was previously used under the assumption that most
functions would not need a frame pointer and it would be more efficient
to store the old stack pointer in a regular register pair.
Unfortunately, right now we're forced to always reserve the Y register
as a frame pointer: whether or not this is needed is only known after
regsiter allocation at which point it doesn't make sense anymore to mark
it as non-reserved. Therefore, it makes sense to use the Y register to
store the old stack pointer in functions with dynamic allocas (with a
variable size or not in the entry block). Knowing this can make the code
around dynamic allocas a lot simpler: simply save/restore the frame
pointer.
This is especially relevant in functions that have a frame pointer
anyway (for example, because they have stack spills). The stack restore
in the epilogue will implicitly restore the old stack pointer, so there
is no need to store the old stack pointer separately. It even reduces
register pressure as a side effect.
Differential Revision: https://reviews.llvm.org/D97815
Skip operation on the lower byte in int16 logical left shift when
shift amount is greater than 8.
Skip operation on the higher byte in int16 logical & arithmetic
right shift when shift amount is greater than 8.
Reviewed By: aykevl
Differential Revision: https://reviews.llvm.org/D115594