The existing code wasn't getting the subtarget info from the fragment,
so the current status of RVC would be ignored. This would cause a crash
for the new test case when the target then reported it couldn't write
the requested number of code alignment bytes.
Differential Revision: https://reviews.llvm.org/D122236
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
This re-architects the RISCV relocation handling to bring the
implementation closer in line with the implementation in binutils. We
would previously aggressively resolve the relocation. With this
restructuring, we always will emit a paired relocation for any symbolic
difference of the type of S±T[±C] where S and T are labels and C is a
constant.
GAS has a special target hook controlled by `RELOC_EXPANSION_POSSIBLE`
which indicates that a fixup may be expanded into multiple relocations.
This is used by the RISCV backend to always emit a paired relocation -
either ADD[WIDTH] + SUB[WIDTH] for text relocations or SET[WIDTH] +
SUB[WIDTH] for a debug info relocation. Irrespective of whether linker
relaxation support is enabled, symbolic difference is always emitted as
a paired relocation.
This change also sinks the target specific behaviour down into the
target specific area rather than exposing it to the shared relocation
handling. In the process, we also sink the "special" handling for debug
information down into the RISCV target. Although this improves the path
for the other targets, this is not necessarily entirely ideal either.
The changes in the debug info emission could be done through another
type of hook as this functionality would be required by any other target
which wishes to do linker relaxation. However, as there are no other
targets in LLVM which currently do this, this is a reasonable thing to
do until such time as the code needs to be shared.
Improve the handling of the relocation (and add a reduced test case from
the Linux kernel) to ensure that we handle complex expressions for
symbolic difference. This ensures that we correct relocate symbols with
the adddends normalized and associated with the addition portion of the
paired relocation.
This change also addresses some review comments from Alex Bradbury about
the relocations meant for use in the DWARF CFA being named incorrectly
(using ADD6 instead of SET6) in the original change which introduced the
relocation type.
This resolves the issues with the symbolic difference emission
sufficiently to enable building the Linux kernel with clang+IAS+lld
(without linker relaxation).
Resolves PR50153, PR50156!
Fixes: ClangBuiltLinux/linux#1023, ClangBuiltLinux/linux#1143
Reviewed By: nickdesaulniers, maskray
Differential Revision: https://reviews.llvm.org/D103539
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
The following testcase
function:
.Lpcrel_label1:
auipc a0, %pcrel_hi(other_function)
addi a1, a0, %pcrel_lo(.Lpcrel_label1)
.p2align 2 # Causes a new fragment to be emitted
.type other_function,@function
other_function:
ret
exposes an odd behaviour in which only the %pcrel_hi relocation is
evaluated but not the %pcrel_lo.
$ llvm-mc -triple riscv64 -filetype obj t.s | llvm-objdump -d -r -
<stdin>: file format ELF64-riscv
Disassembly of section .text:
0000000000000000 function:
0: 17 05 00 00 auipc a0, 0
4: 93 05 05 00 mv a1, a0
0000000000000004: R_RISCV_PCREL_LO12_I other_function+4
0000000000000008 other_function:
8: 67 80 00 00 ret
The reason seems to be that in RISCVAsmBackend::shouldForceRelocation we
only consider the fragment but in RISCVMCExpr::evaluatePCRelLo we
consider the section. This usually works but there are cases where the
section may still be the same but the fragment may be another one. In
that case we end forcing a %pcrel_lo relocation without any %pcrel_hi.
This patch makes RISCVAsmBackend::shouldForceRelocation use the section,
if any, to determine if the relocation must be forced or not.
Differential Revision: https://reviews.llvm.org/D60657
Prefer `MCFixupKind` where possible and add getTargetKind() to
convert to `unsigned` when needed rather than scattering cast
operators around the place.
Differential Revision: https://reviews.llvm.org/D59890
llvm-svn: 369720
The current behavior of shouldForceRelocation forces relocations for the
majority of fixups when relaxation is enabled. This makes sense for
fixups which incorporate symbols but is unnecessary for simple data
fixups where the fixup target is already resolved to an absolute value.
Differential Revision: https://reviews.llvm.org/D63404
Patch by Edward Jones.
llvm-svn: 369257
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366524
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366442
RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign() assumed that the
align specified would be greater than or equal to the minimum nop length, but
that is not always the case - for example if a user specifies ".align 0" in
assembly.
Differential Revision: https://reviews.llvm.org/D63274
Patch by Edward Jones.
llvm-svn: 366176
The bool result of shouldInsertExtraNopBytesForCodeAlign() is not checked but
the returned nop count is unconditionally read even though it could be
uninitialized.
Differential Revision: https://reviews.llvm.org/D63285
Patch by Edward Jones.
llvm-svn: 366175
This patch adds support for parsing and assembling the %tls_ie_pcrel_hi
and %tls_gd_pcrel_hi modifiers.
Differential Revision: https://reviews.llvm.org/D55342
llvm-svn: 358994
This patch adds support in the MC layer for parsing and assembling the
4-operand add instruction needed for TLS addressing. This also involves
parsing the %tprel_hi, %tprel_lo and %tprel_add operand modifiers.
Differential Revision: https://reviews.llvm.org/D55341
llvm-svn: 357698
This patch allows symbols appended with @plt to parse and assemble with the
R_RISCV_CALL_PLT relocation.
Differential Revision: https://reviews.llvm.org/D55335
Patch by Lewis Revill.
llvm-svn: 357470
This patch adds proper handling of -target-abi, as accepted by llvm-mc and
llc. Lowering (codegen) for the hard-float ABIs will follow in a subsequent
patch. However, this patch does add MC layer support for the hard float and
RVE ABIs (emission of the appropriate ELF flags
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#-file-header).
ABI parsing must be shared between codegen and the MC layer, so we add
computeTargetABI to RISCVUtils. A warning will be printed if an invalid or
unrecognized ABI is given.
Differential Revision: https://reviews.llvm.org/D59023
llvm-svn: 355771
Linker relaxation may change code size. We need to fix up the alignment
of alignment directive in text section by inserting Nops and R_RISCV_ALIGN
relocation type. So then linker could satisfy the alignment by removing Nops.
To do this:
1. Add shouldInsertExtraNopBytesForCodeAlign target hook to calculate
the Nops we need to insert.
2. Add shouldInsertFixupForCodeAlign target hook to insert
R_RISCV_ALIGN fixup type.
Differential Revision: https://reviews.llvm.org/D47755
llvm-svn: 352616
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This is a update to D43157 to correctly handle fixup_riscv_pcrel_lo12.
Notable changes:
Rebased onto trunk
Handle and test S-type
Test case pcrel-hilo.s is merged into relocations.s
D43157 description:
VK_RISCV_PCREL_LO has to be handled specially. The MCExpr inside is
actually the location of an auipc instruction with a VK_RISCV_PCREL_HI fixup
pointing to the real target.
Differential Revision: https://reviews.llvm.org/D54029
Patch by Chih-Mao Chen and Michael Spencer.
llvm-svn: 349764
This extends the .option support from D45864 to enable/disable the relax
feature flag from D44886
During parsing of the relax/norelax directives, the RISCV::FeatureRelax
feature bits of the SubtargetInfo stored in the AsmParser are updated
appropriately to reflect whether relaxation is currently enabled in the
parser. When an instruction is parsed, the parser checks if relaxation is
currently enabled and if so, gets a handle to the AsmBackend and sets the
ForceRelocs flag. The AsmBackend uses a combination of the original
RISCV::FeatureRelax feature bits set by e.g -mattr=+/-relax and the
ForceRelocs flag to determine whether to emit relocations for symbol and
branch diffs. Diff relocations should therefore only not be emitted if the
relax flag was not set on the command line and no instruction was ever parsed
in a section with relaxation enabled to ensure correct diffs are emitted.
Differential Revision: https://reviews.llvm.org/D46423
Patch by Lewis Revill.
llvm-svn: 346655
Resolving fixup_riscv_call by assembler when the linker relaxation diabled
and the function and callsite within the same compile unit.
And also adding static_assert after Infos array declaration
to avoid missing any new fixup in MCFixupKindInfo in the future.
Differential Revision: https://reviews.llvm.org/D47126
llvm-svn: 333487
To do this:
1. Add fixup_riscv_relax fixup types which eventually will
transfer to R_RISCV_RELAX relocation types.
2. Insert R_RISCV_RELAX relocation types to auipc function call
expression when linker relaxation enabled.
Differential Revision: https://reviews.llvm.org/D44886
llvm-svn: 333158
For RISC-V it is desirable to have relaxation happen in the linker once
addresses are known, and as such the size between two instructions/byte
sequences in a section could change.
For most assembler expressions, this is fine, as the absolute address results
in the expression being converted to a fixup, and finally relocations.
However, for expressions such as .quad .L2-.L1, the assembler folds this down
to a constant once fragments are laid out, under the assumption that the
difference can no longer change, although in the case of linker relaxation the
differences can change at link time, so the constant is incorrect. One place
where this commonly appears is in debug information, where the size of a
function expression is in a form similar to the above.
This patch extends the assembler to allow an AsmBackend to declare that it
does not want the assembler to fold down this expression, and instead generate
a pair of relocations that allow the linker to carry out the calculation. In
this case, the expression is not folded, but when it comes to emitting a
fixup, the generic FK_Data_* fixups are converted into a pair, one for the
addition half, one for the subtraction, and this is passed to the relocation
generating methods as usual. I have named these FK_Data_Add_* and
FK_Data_Sub_* to indicate which half these are for.
For RISC-V, which supports this via e.g. the R_RISCV_ADD64, R_RISCV_SUB64 pair
of relocations, these are also set to always emit relocations relative to
local symbols rather than section offsets. This is to deal with the fact that
if relocations were calculated on e.g. .text+8 and .text+4, the result 12
would be stored rather than 4 as both addends are added in the linker.
Differential Revision: https://reviews.llvm.org/D45181
Patch by Simon Cook.
llvm-svn: 333079
This is a different approach to fixing the problem described in D46746.
RISCVAsmBackend currently depends on the getSize helper function returning the
number of bytes a fixup may change (note: some other backends have a similar
helper named getFixupNumKindBytes). As noted in that review, this doesn't
return the correct size for FK_Data_1, FK_Data_2, or FK_Data_8 meaning that
too few bytes will be written in the case of FK_Data_8, and there's the
potential of writing outside the Data array for the smaller fixups.
D46746 extends getSize to recognise some of the builtin fixup types. Rather
than having a function that needs to be kept up to date as new builtin or
target-specific fixups are added, We can calculate an appropriate bound on the
number of bytes that might be touched using Info.TargetSize and
Info.TargetOffset.
Differential Revision: https://reviews.llvm.org/D46965
llvm-svn: 333076
With this we gain a little flexibility in how the generic object
writer is created.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47045
llvm-svn: 332868
To make this work I needed to add an endianness field to MCAsmBackend
so that writeNopData() implementations know which endianness to use.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47035
llvm-svn: 332857
For RISCV branch instructions, we need to preserve relocation types when linker
relaxation enabled, so then linker could modify offset when the branch offsets
changed.
We preserve relocation types by define shouldForceRelocation.
IsResolved return by evaluateFixup will always false when shouldForceRelocation
return true. It will make RISCV MC Branch Relaxation always relax 16-bit
branches to 32-bit form, even if the symbol actually could be resolved.
To avoid 16-bit branches always relax to 32-bit form when linker relaxation
enabled, we add a new parameter WasForced to indicate that the symbol actually
couldn't be resolved and not forced by shouldForceRelocation return true.
RISCVAsmBackend::fixupNeedsRelaxationAdvanced could relax branches with
unresolved symbols by (!IsResolved && !WasForced).
RISCV MC Branch Relaxation is needed because RISCV could perform 32-bit
to 16-bit transformation in MC layer.
Differential Revision: https://reviews.llvm.org/D46350
llvm-svn: 332696
1. Deine FeatureRelax to enable/disable linker relaxation.
2. Define shouldForceRelocation to preserve relocation types even if the fixup
can be resolved when linker relaxation enabled. This is necessary for
correctness as offsets may change during relaxation.
Differential Revision: https://reviews.llvm.org/D46674
llvm-svn: 332318
Summary:
This patch implements relaxation for RISCV in the MC layer.
The following relaxations are currently handled:
1) Relax C_BEQZ to BEQ and C_BNEZ to BNEZ in RISCV.
2) Relax and C_J $imm to JAL x0, $imm and CJAL to JAL ra, $imm.
Reviewers: asb, llvm-commits, efriedma
Reviewed By: asb
Subscribers: shiva0217
Differential Revision: https://reviews.llvm.org/D43055
llvm-svn: 326626
When the compressed instruction set is enabled, the 16-bit c.nop can be
generated if necessary.
Differential Revision: https://reviews.llvm.org/D41221
Patch by Shiva Chen.
llvm-svn: 322658
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
%lo(), %hi(), and %pcrel_hi() are supported and test cases have been added to
ensure the appropriate fixups and relocations are generated. I've added an
instruction format field which is used in RISCVMCCodeEmitter to, for
instance, tell whether it should emit a lo12_i fixup or a lo12_s fixup
(RISC-V has two 12-bit immediate encodings depending on the instruction
type).
Differential Revision: https://reviews.llvm.org/D23568
llvm-svn: 314389
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177