Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
This patch fixes a bug that generates unnecessary packing/unpacking structure code because of incorrectly handling lifetime intrinsic.
For example, a partition of an alloca may contain many slices:
```
Partition [0, 4):
Slice0: [0, 4) used by: load i32 addr;
Slice1: [0, 4) used by: store i32 v, addr;
Slice2: [0, 16) used by lifetime.start(16, addr);
```
When SROA determines if the partition can be promoted, lifetime.start is currently treated as a whole alloca load/store, so Slice0 and Slice1 cannot be promoted at this attempt,
but the packing/unpacking code for Slice0 and Slice1 has been generated.
After rewrite lifetime.start/end intrinsic, SROA tries again with Slice0 and Slice1 and finally promotes them, but redundant packing/unpacking code remaining in the IRs.
This patch changes promotability checking to ignore lifetime intrinsic (they will be rewritten to correct sizes later), so we can promote the real users (load/store) at the first attempt with optimal code.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124967
We commonly want to create either an inbounds or non-inbounds GEP
based on a boolean value, e.g. when preserving inbounds from
existing GEPs. Directly accept such a boolean in the API, rather
than requiring a ternary between CreateGEP and CreateInBoundsGEP.
This change is not entirely NFC, because we now preserve an
inbounds flag in a constant expression edge-case in InstCombine.
When a load extends past the extent of the alloca, SROA will
restrict the slice size to extend to the end of the alloca only.
However, presplitting was asserting that the load size and the
slice size match exactly, which does not hold in this case.
Relax the assertion to only require that the load size is greater
or equal than the slice size.
There seems to be one more uncaught problem, SROA may now end up trying
to re-re-repromote the just-promoted shadow alloca, and do that endlessly.
This reverts commit adc0984d81.
This is inspired by the original variant of D109749 by Graham Hunter,
but is a more general version.
Roughly, instead of promoting the alloca, we call it
a shadow/backing alloca, go through all it's slices,
clone(!) instructions that operated on it,
but make them operate on the cloned alloca,
and promote cloned alloca instead.
This keeps the shadow/backing alloca, and all the original instructions
around, which results in said shadow/backing alloca being
a perfect mirror/representation of the promoted alloca's content,
so calls that take the alloca as arguments (non-capturingly!)
can be supported.
For now, we require that the calls also don't modify the alloca's content,
but that is only to simplify the initial implementation,
and that will be supported in a follow-up.
Overall, this leads to *smaller* codesize:
https://llvm-compile-time-tracker.com/compare.php?from=a8b4f5bbab62091835205f3d648902432a4a5b58&to=aeae054055b125b011c1122f82c86457e159436f&stat=size-total
and is roughly neutral compile-time wise:
https://llvm-compile-time-tracker.com/compare.php?from=a8b4f5bbab62091835205f3d648902432a4a5b58&to=aeae054055b125b011c1122f82c86457e159436f&stat=instructions
This relands commit 703240c71f,
that was reverted by commit 7405581f7c,
because the assertion `isa<LoadInst>(OrigInstr)` didn't hold in practice,
as the newly added test `@select_of_ptrs` shows:
If the pointers into alloca are used by select's/PHI's, then even if
we manage to fracture the alloca, some sub-alloca's will likely remain.
And if there are any non-capturing calls, then we will also decide to
keep the original backing alloca around, and we suddenly ~doubled
the alloca size, and the amount of memory traffic.
I'm not sure if this is a problem or we could live with it,
but let's leave that for later...
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D113520
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This method is intended for use in places that cannot be reached
with opaque pointers, or part of deprecated methods. This makes
it easier to see that some uses of getPointerElementType() don't
need further action.
Differential Revision: https://reviews.llvm.org/D117870
In the process of rewriting `alloca`s and `phi`s that use them, the SROA
pass can try to insert a non-PHI instruction by calling
`getFirstInsertionPt()`, which is not possible in a catchswitch BB. This
CL makes we bail out on these cases.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D117168
SROA has 3 data-structures where it stores sets of instructions that should
be deleted:
- DeadUsers -> instructions that are UB or have no users
- DeadOperands -> instructions that are UB or operands of useless phis
- DeadInsts -> "dead" instructions, including loads of uninitialized memory
with users
The first 2 sets can be RAUW with poison instead of undef. No brainer as UB
can be replaced with poison, and for instructions with no users RAUW is a
NOP.
The 3rd case cannot be currently replaced with poison because the set mixes
the loads of uninit memory. I leave that alone for now.
Another case where we can use poison is in the construction of vectors from
multiple loads. The base vector for the first insertelement is now poison as
it doesn't matter as it is fully overwritten by inserts.
Differential Revision: https://reviews.llvm.org/D116887
To be more consistent with other pass struct names.
There are still more passes that don't end with "Pass", but these are the important ones.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112935
We implement logic to convert a byte offset into a sequence of GEP
indices for that offset in a number of places. This patch adds a
DataLayout::getGEPIndicesForOffset() method, which implements the
core logic. I've updated SROA, ConstantFolding and InstCombine to
use it, and there's a few more places where it looks relevant.
Differential Revision: https://reviews.llvm.org/D110043
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
Make the following changes in order to support opaque pointers in SROA:
* Generate i8 GEPs for opaque pointers.
* Explicitly enforce that promotable allocas only have stores of
the alloca type -- previously this was implicitly enforced.
* Replace a check for pointer element type with load/store type.
Differential Revision: https://reviews.llvm.org/D109259
Originally committed as ffc3fb665d
Reverted in fcf2d5f402 due to an
assertion failure.
Original commit message:
Allow the folding even if there is an
intervening bitcast.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D106667
I don't know much about this pass, but we need a stronger
check on the memset length arg to avoid an assert. The
current code was added with D59000.
The test is reduced from:
https://llvm.org/PR50910
Differential Revision: https://reviews.llvm.org/D106462
SROA sometimes preserves MD_mem_parallel_loop_access and MD_access_group metadata on loads/stores, and sometimes fails to do so. This change adds copying of the MD after other CreateAlignedLoad/CreateAlignedStores. Also fix a case where the metadata was being copied from a load, rather than the store.
Added a LIT test to catch one case.
Patch by Mark Mendell
Differential Revision: https://reviews.llvm.org/D103254
Upon encountering loads/stores on types whose size is not a multiple of 8 bits the SROA pass would either trip an assertion or use logic that was not meant to work with such irregularly-sized types.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D99435
Upon encountering loads/stores on types whose size is not a multiple of 8 bits the SROA pass would either trip an assertion or use logic that was not meant to work with such irregularly-sized types.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D99435
Currently all AA analyses marked as preserved are stateless, not taking
into account their dependent analyses. So there's no need to mark them
as preserved, they won't be invalidated unless their analyses are.
SCEVAAResults was the one exception to this, it was treated like a
typical analysis result. Make it like the others and don't invalidate
unless SCEV is invalidated.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D102032
When we are able to SROA an alloca, we know all uses of it, meaning we
don't have to preserve the invariant group intrinsics and metadata.
It's possible that we could lose information regarding redundant
loads/stores, but that's unlikely to have any real impact since right
now the only user is Clang and vtables.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99760
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
SROA does not correctly account for offsets in TBAA/TBAA struct metadata.
This patch creates functionality for generating new MD with the corresponding
offset and updates SROA to use this functionality.
Differential Revision: https://reviews.llvm.org/D95826
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
The SROA pass tries to be lazy for removing dead instructions that are collected during iterative run of the pass in the DeadInsts list. However it does not remove instructions from the dead list while running eraseFromParent() on those instructions.
This causes (rare) null pointer dereferences. For example, in the speculatePHINodeLoads() instruction, in the following code snippet:
```
while (!PN.use_empty()) {
LoadInst *LI = cast<LoadInst>(PN.user_back());
LI->replaceAllUsesWith(NewPN);
LI->eraseFromParent();
}
```
If the Load instruction LI belongs to the DeadInsts list, it should be removed when eraseFromParent() is called. However, the bug does not show up in most cases, because immediately in the same function, a new LoadInst is created in the following line:
```
LoadInst *Load = PredBuilder.CreateAlignedLoad(
LoadTy, InVal, Alignment,
(PN.getName() + ".sroa.speculate.load." + Pred->getName()));
```
This new LoadInst object takes the same memory address of the just deleted LI using eraseFromParent(), therefore the bug does not materialize. In very rare cases, the addresses differ and therefore, a dangling pointer is created, causing a crash.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D92431
This fixes the bug 47945. It is legal to have a PHI with values
from from the same block, but values must stay the same. In this
case it is illegal to merge different values.
Differential Revision: https://reviews.llvm.org/D89978
And another step towards transformss not introducing inttoptr and/or
ptrtoint casts that weren't there already.
In this case, when load/store uses have conflicting types,
instead of falling back to the iN, we can try to use allocated sub-type.
As disscussed, this isn't the best idea overall (we shouldn't rely on
allocated type), but it works fine as a temporary measure.
I've measured, and @ `-O3` as of vanilla llvm test-suite + RawSpeed,
this results in +0.05% more bitcasts, -5.51% less inttoptr
and -1.05% less ptrtoint (at the end of middle-end opt pipeline)
See https://bugs.llvm.org/show_bug.cgi?id=47592
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D88788
This patch fixes this crash https://gcc.godbolt.org/z/Ps8d1e
And gives SROA the ability to remove assumes if it allows promoting an alloca to register
Without removing assumes when it can't promote to register.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86570
When visiting load and store instructions in SROA skip scalable vectors.
This is relevant in the implementation of the 'arm_sve_vector_bits'
attribute that is used to define VLS types, where an alloca of a
fixed-length vector could be bitcasted to scalable. See D85128 for more
information.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85725
It is technically legal for optimizations to create an alloca that is
used by more than one dbg.declare, if one or both of them are inlined
instances of aliasing variables.
Differential Revision: https://reviews.llvm.org/D85172
This is the second of two patches to address PR46753. We basically allow
SROA to promote allocas that are used in doppable instructions, for
now that means `llvm.assume`. The (transitive) uses are replaced by
`undef` in the droppable instructions.
See also D83976.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D83978