We used to be very conservative when integer states were merged.
Instead of adding the known range (which is large due to uncertainty)
into the assumed range (which is hopefully small), we can also only
allow to merge in both at the same time into their respective
counterpart. This will ensure we keep the invariant that assumed is part
of known.
When we recreate instructions as part of simplification we need to take
care of debug metadata and replacing the value multiple times. For now,
we handle both conservatively.
The patch simplifies some of the patterns as below
(A | (B & C0)) | (B & C1) -> A | (B & C0|C1)
((B & C0) | A) | (B & C1) -> (B & C0|C1) | A
In some scenarios like byte reverse on half word, we can see this pattern multiple times and this conversion can optimize these patterns.
Additionally this commit fixes the issue reported with the test case.
int f(int a, int b) {
int c = ((unsigned char)(a >> 23) & 925);
if (a)
c = (a >> 23 & b) | ((unsigned char)(a >> 23) & 925) | (b >> 23 & 157);
return c;
}
The previous revision/commit did not check one-use of an intermediate value that this transform re-uses.
When that value has another use, an existing transform will try to invert the transform here.
By adding one-use checks, we avoid the infinite loops seen with the earlier commit.
Differential Revision: https://reviews.llvm.org/D124119
Existing condition for
fold icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
missed some boundary. It cause this fold don't work for some cases, and the
reason is due to signed number overflow.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D127188
The IV widening code currently asserts that terminators aren't SCEVable
-- however, this is not the case for invokes with a returned attribute.
As far as I can tell, this assertions is not necessary -- even if we
have a critical edge (the second test case), the trunc gets inserted
in a legal position.
Fixes https://github.com/llvm/llvm-project/issues/55925.
Differential Revision: https://reviews.llvm.org/D127288
This reverts commit 266ea446ab.
The reasons for the revert have been addressed by cleaning up condition
handling in VPlan and properly marking VPBranchOnMaskRecipe as using
scalars.
The test case for the revert from D123720 has been added in 3d663308a5.
Background:
When we construct coroutine frame, we would insert a dbg.declare
intrinsic for it:
```
%hdl = call void @llvm.coro.begin() ; would return coroutine handle
call void @llvm.dbg.declare(metadata ptr %hdl, metadata
![[DEBUG_VARIABLE: __coro_frame]], metadata !DIExpression())
```
And in the splitted coroutine, it looks like:
```
define void @coro_func.resume(ptr *hdl) {
entry.resume:
call void @llvm.dbg.declare(metadata ptr %hdl, metadata
![[DEBUG_VARIABLE: __coro_frame]], metadata !DIExpression())
}
```
And we would salvage the debug info by inserting a new alloca here:
```
define void @coro_func.resume(ptr %hdl) {
entry.resume:
%frame.debug = alloca ptr
call void @llvm.dbg.declare(metadata ptr %frame.debug, metadata
![[DEBUG_VARIABLE: __coro_frame]], metadata !DIExpression())
store ptr %hdl, %frame.debug
}
```
But now, the problem comes since the `dbg.declare` refers to the address
of that alloca instead of actual coroutine handle. I saw there are codes
to solve the problem but it only applies to complex expression only. I
feel if it is OK to relax the condition to make it work for
`__coro_frame`.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D126277
InstCombine tries to rewrite
%prod = mul nsw i64 %X, Scale
%acc = add nsw i64 %prod, Offset
%0 = alloca i8, i64 %acc, align 4
%1 = bitcast i8* %0 to i32*
Use ( %1 )
into
%prod = mul nsw i64 %X, Scale/4
%acc = add nsw i64 %prod, Offset/4
%0 = alloca i32, i64 %acc, align 4
Use (%0)
But it assumes Scale is unsigned, and performs an unsigned division.
So we should bail out if Scale cannot be interpreted as an unsigned safely.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126546
If we don't demand low bits and it is valid to pre-shift a constant:
(C2 >> X) << C1 --> (C2 << C1) >> X
https://alive2.llvm.org/ce/z/_UzTMP
This is the reverse-order shift sibling to 82040d414b ( D127122 ).
It seems likely that we would want to add this to the SDAG version of
the code too to keep it on par with IR.
c2eccc6 introduced a call to etHasNoUnsignedWrap which implicitly assumes that Inst is a OverflowingBinaryOperator. This is frequently untrue, but was not caught because cast<Ty>(X) has been broken, see https://discourse.llvm.org/t/cast-x-is-broken-implications-and-proposal-to-address/63033 for context.
I considered reverting this, but since doing so re-introduces a nasty miscompile of its own, I decided to fix forward instead.
I'll note that this is a particularly nasty form of the cast<Ty>(X) issue. Because the cast was succeeding unexpected, we were writing data to instructions which weren't OBOs. This could result in near arbitrary data or memory corruption. I'm a bit shocked that the sanitizers didn't find this TBH.
Enhance memchr libcall folder to handle constant arrays consisting
of one or two sequences of cosecutive equal characters.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126515
If we don't demand high bits (zeros) and it is valid to pre-shift a constant:
(C2 << X) >> C1 --> (C2 >> C1) << X
https://alive2.llvm.org/ce/z/P3dWDW
There are a variety of related patterns, but I haven't found a single solution
that gets all of the motivating examples - so pulling this piece out of
D126617 along with more tests.
We should also handle the case where we shift-right followed by shift-left,
but I'll make that a follow-on patch assuming this one is ok. It seems likely
that we would want to add this to the SDAG version of the code too to keep it
on par with IR.
Differential Revision: https://reviews.llvm.org/D127122
If we look through a truncate in matchLinearIVUser, it's possible
we find a sext/zext instruction that didn't come from widening.
This will fail the MatchedItCount->getType() == InnerInductionPHI->getType()
assertion.
Fix this by checking that we did not look through a truncate already.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D127149
Based on reviewer comments on https://reviews.llvm.org/D126692 I've
added FastMathFlags to the select instruction used when tail-folding
with reductions. These flags can then be used by InstCombine to
decide upon the most optimal floating point identity value for
fadd/fsub. Doing so unlocks further optimisations, such as folding
selects into masked loads.
Differential Revision: https://reviews.llvm.org/D126778
Now that transforms introducing branch on poison have been removed,
we can stop marking ranges that have been derived from branch
conditions as containing undef. The existing comment explains why
this is legal. I've checked that alive2 is happy with SCCP tests
after this change.
Differential Revision: https://reviews.llvm.org/D126647
Currently, we only check !nosanitize metadata for instruction passed to function `getInterestingMemoryOperands()` or instruction which is a cannot return callable instruction.
This patch add this check to any instruction.
E.g. ASan shouldn't instrument the instruction inserted by UBSan/pointer-overflow.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126269
In D115737 I found that I needed to teach Instruction::isSafeToRemove()
about strictfp/constrained intrinsics. It was pointed out that this is
probably the wrong function to use isInstructionTriviallyDead(). It doesn't
make sense to have a "second, worse implementation".
I also believe that the Instruction class is the wrong place for this
functionality. The information about whether or not an instruction can be
removed is in the transform passes and should stay there.
Differential Revision: https://reviews.llvm.org/D118387
Try to simplify BranchOnCount to `BranchOnCond true` if TC <= UF * VF.
This is an alternative to D121899 which simplifies the VPlan directly
instead of doing so late in code-gen.
The potential benefit of doing this in VPlan is that this may help
cost-modeling in the future. The reason this is done in prepareToExecute
at the moment is that a single plan may be used for multiple VFs/UFs.
There are further simplifications that can be applied as follow ups:
1. Replace inductions with constants
2. Replace vector region with regular block.
Fixes#55354.
Depends on D126679.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126680
https://alive2.llvm.org/ce/z/o7rQ5q
This shows an extra instruction in some cases, but that is
caused by an existing canonicalization of trunc -> and+icmp.
Codegen should be better for any target where a multiply is
more costly than the most simple ALU op.
This ends up producing the requested x86 asm from issue #55618,
but it's not the same IR. We are missing a canonicalization
from the negate+mask pattern to the trunc+select created here.
Instead of setting the successor to the exit using CFG.ExitBB, set it to
nullptr initially. The successor to the exit block is later set either
through createEmptyBasicBlock or after VPlan execution (because at the
moment, no block is created by VPlan for the exit block, the existing
one is reused).
This also enables BranchOnCond to be used as terminator for the exiting
block of the topmost vector region.
Depends on D126618.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126679
Some cl::ZeroOrMore were added to avoid the `may only occur zero or one times!`
error. More were added due to cargo cult. Since the error has been removed,
cl::ZeroOrMore is unneeded.
Also remove cl::init(false) while touching the lines.
Improved/fixed cost modeling for shuffles by providing masks, improved
cost model for non-identity insertelements.
Differential Revision: https://reviews.llvm.org/D115462
Async context frames are allocated with a maximum alignment. If a type
requests an alignment bigger than that dynamically align the address
in the frame.
Differential Revision: https://reviews.llvm.org/D126715
This patch removes CondBit and Predicate from VPBasicBlock. To do so,
the patch introduces a new branch-on-cond VPInstruction opcode to model
a branch on a condition explicitly.
This addresses a long-standing TODO/FIXME that blocks shouldn't be users
of VPValues. Those extra users can cause issues for VPValue-based
analyses that don't expect blocks. Addressing this fixme should allow us
to re-introduce 266ea446ab.
The generic branch opcode can also be used in follow-up patches.
Depends on D123005.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126618
This patch proposed to use a new cost model for loop interchange, which
is obtained from loop cache analysis.
Given a loopnest, what loop cache analysis returns is a vector of loops
[loop0, loop1, loop2, ...] where loop0 should be replaced as the outermost
loop, loop1 should be placed one more level inside, and loop2 one more level
inside, etc. What loop cache analysis does is not only more comprehensive than
the current cost model, it is also a "one-shot" query which means that we only
need to query it once during the entire loop interchange pass, which is better
than the current cost model where we query it every time we check whether it is
profitable to interchange two loops. Thus complexity is reduced, especially after
D120386 where we do more interchanges to get the globally optimal loop access pattern.
Updates made to test cases are mostly minor changes and some corrections.
Test coverage for loop interchange is not reduced.
Currently we did not completely remove the legacy cost model, but keep it as
fall-back in case the new cost model did not run successfully. This is because
currently we have some limitations in delinearization, which sometimes makes
loop cache analysis bail out. The longer term goal is to enhance delinearization
and eventually remove the legacy cost model compeletely.
Reviewed By: bmahjour, #loopoptwg
Differential Revision: https://reviews.llvm.org/D124926
We could go either way on this and several similar matches.
Just matching as a binop is possibly slightly more efficient;
we don't need to re-confirm the opcode of the instruction.
Improved/fixed cost modeling for shuffles by providing masks, improved
cost model for non-identity insertelements.
Differential Revision: https://reviews.llvm.org/D115462
This patch introduces the abstract base class InlinePriority to serve as
the comparison function for the priority queue. A derived class, such
as SizePriority, may choose to cache the priorities for different
functions for performance reasons.
This design shields the type used for the priority away from classes
outside InlinePriority and classes derived from it. In turn,
PriorityInlineOrder no longer needs to be a template class.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D126300
This patch introduces the abstract base class InlinePriority to serve as
the comparison function for the priority queue. A derived class, such
as SizePriority, may choose to cache the priorities for different
functions for performance reasons.
This design shields the type used for the priority away from classes
outside InlinePriority and classes derived from it. In turn,
PriorityInlineOrder no longer needs to be a template class.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D126300
This patch does not effect any behavior of the current code.
The codebase implicitly implies that `Cost::RateFormula` is only called
when the `Cost` is not in losing status, or else there may be possible
to trigger the assertion of `Cost::isValid`.
The intention here is to prevent mis-use where future development
allow `Cost` that is already loser to call `Cost::RateFormula` - Early
exit when `Cost` is already losing.
Reviewed By: Meinersbur, #loopoptwg
Differential Revision: https://reviews.llvm.org/D125670
Recently the terminology used has been changed from Exit->Exiting in
line with common LLVM loop terminology. Update a remaining use of the
old terminology.
Improved/fixed cost modeling for shuffles by providing masks, improved
cost model for non-identity insertelements.
Differential Revision: https://reviews.llvm.org/D115462
Extractelement instructions may come from different basic blocks, need
to take it into account when looking for a last instruction in the
bundle to prevent compiler crash.
Differential Revision: https://reviews.llvm.org/D126777
This reverts commit ec4adf1f6c. The commit causes
clang to hang on a certain input:
```
$ cat q.cc
int f(int a, int b) {
int c = ((unsigned char)(a >> 23) & 925);
if (a)
c = (a >> 23 & b) | ((unsigned char)(a >> 23) & 925) | (b >> 23 & 157);
return c;
}
$ time ./clang-15-10515 --target=x86_64--linux-gnu -O1 -c q.cc
^C
real 0m45.072s
user 0m0.025s
sys 0m0.099s
```
This patch updates the VPlan native path to use VPRegionBlocks for all
loops in a loop nest. Up to now, only the outermost loop used a region.
This is a step towards unifying both paths and keep things consistent
between them. It also prepares various code-gen parts for modeling the
pre-header in the inner loop vectorizer (D121624).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123005
The implementations of VPlanDominatorTree, VPlanLoopInfo and VPlanPredicator
are all incompatible with modeling loops in VPlans as region without
explicit back-edges.
Those pieces are not actively used and only exercised by a few gtest
unit tests. They are at the moment blocking progress towards unifying
the native and inner-loop vectorizer paths in D121624 and D123005.
I think we should not block forward progress on unused pieces of code,
so this patch removes the utilities for now. The plan is to re-introduce
them as needed in a way that is compatible with the unified VPlan scheme
used in both the inner loop vectorizer and the native path.
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D123017
Commit dd5991cc modified the aliasing checks here to allow transforming
a memcpy where the source and destination point into the same object.
However, the change accidentally made the code skip the alias check for
other operations in the loop.
Instead of completely skipping the alias check, just skip the check for
whether the memcpy aliases itself.
Differential Revision: https://reviews.llvm.org/D126486
X <=u (sext i1 Y) --> (X == 0) | Y
https://alive2.llvm.org/ce/z/W_tZzo
This is the conjugate/sibling pattern suggested with D126171
for a sign-extended bool value.
I chose to encode the allockind information in a string constant because
otherwise we would get a bit of an explosion of keywords to deal with
the possible permutations of allocation function types.
I'm not sure that CodeGen.h is the correct place for this enum, but it
seemed to kind of match the UWTableKind enum so I put it in the same
place. Constructive suggestions on a better location most certainly
encouraged.
Differential Revision: https://reviews.llvm.org/D123088
When reassociating GEPs, we can only keep inbounds if both original
GEPs were inbounds, and their offsets have the same sign. For the
sake of simplicity, I only handle the case where both offsets are
non-negative here.
It would probably be fine to just not preserve inbounds at all here,
but as I don't see a compile-time impact for adding the
isKnownNonNegative() calls I went with this more conservative
approach.
Fixes https://github.com/llvm/llvm-project/issues/44206.
Differential Revision: https://reviews.llvm.org/D126687
Even if the total offset is inbounds, we might represent it by first
performing a large negative offset and then a small positive one.
With inbounds semantics as currently specified, each offset must
be inbounds individually, not just the overall offset of the GEP.
Fix this by checking that the sign of all offsets is the same.
Fixes https://github.com/llvm/llvm-project/issues/55722.
(C2 >> X) >> C1 --> (C2 >> C1) >> X
The shift-left form of this transform has existed since:
16f18ed7b5
...but it applies to matching shift right opcodes too:
https://alive2.llvm.org/ce/z/c5eQms
The restriction goes back to:
16f18ed7b5
...but the fold only replaces a shift with a shift, so that's not necessary.
Generalizing to other opcodes is planned as a follow-up.
There are a few places where we use report_fatal_error when the input is broken.
Currently, this function always crashes LLVM with an abort signal, which
then triggers the backtrace printing code.
I think this is excessive, as wrong input shouldn't give a link to
LLVM's github issue URL and tell users to file a bug report.
We shouldn't print a stack trace either.
This patch changes report_fatal_error so it uses exit() rather than
abort() when its argument GenCrashDiag=false.
Reviewed by: nikic, MaskRay, RKSimon
Differential Revision: https://reviews.llvm.org/D126550
If only one of the GEPs is inbounds, then after swapping, there is
no guarantee that one of them will be inbounds as well
(see e.g. https://alive2.llvm.org/ce/z/agaCnp).
This is only a partial fix, because even if both are inbounds, the
result is not necessarily inbounds (if the offsets have different
signs).
As the long explanatory comment attests, performing the modification
in place is pretty tricky. Drop this unnecessary complexity and
always create new instructions.
This should be NFC-ish, but can probably cause difference due to
worklist order.
This option was added in D89854. It prevents GVN from performing
load PRE in a loop, if doing so would require critical edge
splitting on the backedge. From the review:
> I know that GVN Load PRE negatively impacts peeling,
> loop predication, so the passes expecting that latch has
> a conditional branch.
In the PhaseOrdering test in this patch, splitting the backedge
negatively affects vectorization: After critical edge splitting,
the loop gets rotated, effectively peeling off the first loop
iteration. The effect is that the first element is handled
separately, then the bulk of the elements use a vectorized
reduction (but using unaligned, off-by-one memory accesses) and
then a tail of 15 elements is handled separately again.
It's probably worth noting that the loop load PRE from D99926 is
not affected by this change (as it does not need backedge
splitting). This is about normal load PRE that happens to occur
inside a loop.
Differential Revision: https://reviews.llvm.org/D126382
This whole part with recomputation of BPI and BFI looks redundant,
and we tried to get rid of it in D124439. Unfortunately, it causes
some hard-to-reproduce failures due to invalid state of analysis.
Until this is investigated and fixed, let's try to reuse at least
part of available analyzes.
DT is available at this point, and there is no need to recompute it.
Please revert if you see it causing *any* behavior changes.
This reverts the revert commit ad95255b92.
The updated version also creates a load when the store may not execute.
In those cases, we still need to introduce a load in a function where
there may not have been one before, so this doesn't completely resolve
issue #51248.
Original message:
When only a store is sunk, there is no need to create a load in the
pre-header, as the result of the load will never get used.
The dead load can can introduce UB, if the function is marked as
writeonly.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123473
In LLVM's common loop terminology, an exit block is a block outside a
loop with a predecessor inside the loop. An exiting block is a block
inside the loop which branches to an exit block outside the loop.
This patch updates a few places where VPlan was using ExitBlock for a
block exiting a region. Those instances have been updated to use
ExitingBlock.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D126173
(ashr i32 X, 31) * C --> (X < 0) ? -C : 0
https://alive2.llvm.org/ce/z/G8u9SS
With a constant operand, this is an improvement in IR
and codegen (where it can be converted to a mask op).
Without a constant operand, we would have to negate
the operand, so that is probably better left to the backend.
This is similar but not the same optimization that is requested
in #55618.
This patch adds !nosanitize metadata to FixedMetadataKinds.def, !nosanitize indicates that LLVM should not insert any sanitizer instrumentation.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126294
All callers pass true.
select-unfold-freeze.ll is now a subset of select.ll so delete it.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D126501
This is effectively NFC (intentionally no test diffs)
because we already have the related fold that converts
the 'and' pattern to select. So this is just an efficiency
improvement.
This extends the fold from D126410 / 3952c905ef
to allow for the only case where it works with signed
division:
https://alive2.llvm.org/ce/z/k7_ypu
(X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
(X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
This is another improvement based on #55695.
Use logical instead of bitwise and to combine conditions, to avoid
propagating poison from a later condition if an earlier one is
already false. This avoids introducing branch on poison.
Differential Revision: https://reviews.llvm.org/D125898
Patch improves compile time. For function calls, which cannot be
vectorized, create a unique group for each such a call instead of
subgroup. It prevents them from being grouped by a subgroups and
attempts for their vectorization.
Also, looks through casts operand to try to check their
groups/subgroups.
Reduces number of vectorization attempts. No changes in the statistics
for SPEC2017/2006/llvm-test-suite.
Differential Revision: https://reviews.llvm.org/D126476
Need to handle a corner case correctly, if all elements are Undefs/Poisons,
need to emit actual values, not just poisons.
Differential Revision: https://reviews.llvm.org/D126298
Responding to a feature request from the Rust community:
https://github.com/rust-lang/rust/issues/80630
void foo(X) {
for (...)
switch (X)
case A
X = B
case B
X = C
}
Even though the initial switch value is non-constant, the switch
statement can still be threaded: the initial value will hit the switch
statement but the rest of the state changes will proceed by jumping
unconditionally.
The early predictability check is relaxed to allow unpredictable values
anywhere, but later, after the paths through the switch statement have
been enumerated, no non-constant state values are allowed along the
paths. Any state value not along a path will be an initial switch value,
which can be safely ignored.
Differential Revision: https://reviews.llvm.org/D124394
ScatterVectorize nodes should be handled same way as gathers in
reorderBottomToTop function, since we can simple reorder the loads in
this node. Because of that need to include such nodes to the list of
gathered nodes to fix compiler crash.
Differential Revision: https://reviews.llvm.org/D126378
With large compare constant:
(X u/ Y) == C --> (X == C) && (Y == 1)
(X u/ Y) != C --> (X != C) || (Y != 1)
https://alive2.llvm.org/ce/z/EhKwh6
There are various potential missing icmp (div) transforms shown here:
https://github.com/llvm/llvm-project/issues/55695
This is a generalization for part of the udiv + equality.
I didn't check in detail, but some of those may only make sense as
codegen transforms.
This results in one extra instruction in IR, but it is better for
analysis, and looks much better in codegen on all targets that I tried.
Differential Revision: https://reviews.llvm.org/D126410
When updating the branch instruction outside the loopduring non-trivial
unswitching, always skip trivial selects and update the condition.
Otherwise we might create invalid IR, because the trivial select is
inside the loop, while the condition is outside the loop.
Fixes#55697.
The purpose of the custom linked list was to optimize for the case
of a single-element list. It turns out that TinyPtrVector handles
the same basic scenario even better, reducing the size of
LeaderTableEntry by 33%, and requiring only log2(N) allocations
as the size of the list grows. The only downside is that we have
to store the Value's and BasicBlock's in separate vectors, which
is slightly awkward in a few cases. Fortunately that ends up being
entirely encapsulated inside helper functions.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D125205
When we hoist instructions over guard we must clear flags due to these flags
might be implied using this guard, so they make sense only after the guard.
As an example of the bug due to current behavior.
L is known to be in range say [0, 100)
c1 = x u< L
guard (c1)
x1 = add x, 1
c2 = x1 u< L
guard(c2)
basing on guard(c1) we can say that x1 = add nuw nsw x, 1
after guard widening we get
c1 = x u< L
x1 = add nuw nsw x, 1
c2 = x1 u< L
c = and c1, c2
guard(c)
now, basing on fact that x + 1 < L and x >= 0 due to x + 1 is nuw
we can prove that x + 1 u< L implies that x u< L, so we can just remove c1
x1 = add nuw nsw x, 1
c2 = x1 u< L
guard(c2)
But that is not correct due to we will pass x == -1 value.
Reviewed By: mkazantsev
Subscribers: llvm-commits, nikic
Differential Revision: https://reviews.llvm.org/D126354
This patch break foldBitCastBitwiseLogic limite the destination
must have an integer element type, and eliminate one bitcast by
doing the logic op in the type of the input that has an integer
element type.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D126184
SLP should build ScatterVectorize nodes only if they actually end up
with masked gather rather than with scalarization. In the second
scenario better to build a gather node.
Differential Revision: https://reviews.llvm.org/D126379
Need to use all ReductionOps when propagating flags for the reduction
ops, otherwise transformation is not correct. Plus, need to drop nuw/nsw
flags.
Differential Revision: https://reviews.llvm.org/D126371
When compiling the attached new test in scalable-reductions-tf.ll we
were hitting this assertion in fixReduction:
Assertion `isa<PHINode>(U) && "Reduction exit must feed Phi's or select"
The loop contains a reduction and an intermediate store of the reduction
value. When vectorising with tail-folding the contains of 'U' in the
assertion above happened to be a scatter_store. It turns out that we
were still creating a widen recipe for the invariant store, despite
knowing that we can actually sink it. The simplest fix is to change
buildVPlanWithVPRecipes so that we look for invariant stores before
attempting to widen it.
Differential Revision: https://reviews.llvm.org/D126295
The crash is caused by incorrect order set by reorderBottomToTop(), which
happens when it is reordering a TreeEntry which has a user that has already been
reordered earlier. Please see the detailed description in the lit test.
Differential Revision: https://reviews.llvm.org/D126099
shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This extends the transform added with 0353c2c996.
If the shuffle reduces vector length, the transform
reduces the width of the cast, so that should be a
win for most codegen (if not, it can be inverted).
Bitcasts were stripped in one case, but not the other. Of course,
this no longer really matters with opaque pointers, but as I went
through the trouble of tracking this down, we may as well remove
one typed vs opaque pointer optimization discrepancy.
Use IRBuilder so that the newly created freeze instructions
automatically gets inserted back into the IC worklist.
The changed worklist processing order leads to some cosmetic
differences in tests.
Fixes https://github.com/llvm/llvm-project/issues/55619.
To be used correctly in a sort-like function, isFirstInsertElement
function must follow weak strict ordering rule, i.e.
isFirstInsertElement(IE1, IE1) should return false.
Most of the folds implemented in this function work fine with
logical operations. We only need to be careful for the cases that
work on non-constant masks, where the RHS operand shouldn't be
poison.
This is a conservative implementation that bails out of illegal
transforms, but we could also change these to insert freeze instead.
This is a followup to D125754. We introduce two branches, one
before the unrolled loop and one before the epilogue (and similar
for the prologue case). The previous patch only froze the
condition on the first branch.
Rather than independently freezing the second condition, this patch
instead freezes TripCount and bases BECount on it. These are the
two quantities involved in the conditions, and this ensures that
both work on a consistent, non-poisonous trip count.
Differential Revision: https://reviews.llvm.org/D125896
Fixes a bug preventing moving the loop's metadata to an outer loop's header,
which happens if the loop's exit is also the header of an outer loop.
Adjusts test for above.
Fixes#55416.
Differential Revision: https://reviews.llvm.org/D125574
Builds UserIgnore list only once as a SmallDenseSet without rebuilding
it between the runs, iterate over gathers instead list of reduction ops,
do some checks in the buildTree_rec only if the corresponding containers
are not empty.
SLP vectorizer emits extracts for externally used vectorized scalars and
estimates the cost for each such extract. But in many cases these
scalars are input for insertelement instructions, forming buildvector,
and instead of extractelement/insertelement pair we can emit/cost
estimate shuffle(s) cost and generate series of shuffles, which can be
further optimized.
Tested using test-suite (+SPEC2017), the tests passed, SLP was able to
generate/vectorize more instructions in many cases and it allowed to reduce
number of re-vectorization attempts (where we could try to vectorize
buildector insertelements again and again).
Differential Revision: https://reviews.llvm.org/D107966
X <u (zext i1 Y) --> (X == 0) && Y
https://alive2.llvm.org/ce/z/avQDRY
This is a generalization of 4069cccf3b based on the post-commit suggestion.
This also adds the i1 type check and tests that were missing from the earlier
attempt; that commit caused several bot fails and was reverted.
Differential Revision: https://reviews.llvm.org/D126171
Similarly to a change recently done for fcmps, add a flag that
indicates whether the and/or is logical to foldAndOrOfICmps, and
reuse the function when folding logical and/or.
We were already calling some parts of it, but this gives us a
clearer indication of which parts may need poison-safe variants,
and would also allow to fold combinations of bitwise and logical
and/or.
This change should be close to NFC, because all folds this enables
were either already called previously, or can make use of implied
poison reasoning.
Previously, `getRegUsageForType` was implemented using
`getTypeLegalizationCost`. `getRegUsageForType` is used by the loop
vectorizer to estimate the register pressure caused by using a vector
type. However, `getTypeLegalizationCost` currently only appears to
understand splitting and not scalarization, so significantly
underestimates the register requirements.
Instead, use `getNumRegisters`, which understands when scalarization
can occur (via computeRegisterProperties).
This was discovered while investigating D118979 (Set maximum VF with
shouldMaximizeVectorBandwidth), where under fixed-length 512-bit SVE the
loop vectorizer previously ends up costing an v128i1 as 2 v64i*
registers where it actually occupies 128 i32 registers.
I'm sending this patch early for comment, I'm still doing some sanity checking
with LNT. I note that getRegisterClassForType appears to return VectorRC even
though the type in question (large vNi1 types) end up occupying scalar
registers. That might be worth fixing too.
Differential Revision: https://reviews.llvm.org/D125918
The latch may not be the exiting block. Use the exiting block instead
when looking up the incoming value of the LCSSA phi node. This fixes a
crash with early-exit loops.
This is the specific pattern seen in #53432, but it can be extended
in multiple ways:
1. The 'zext' could be an 'and'
2. The 'sub' could be some other binop with a similar ==0 property (udiv).
There might be some way to generalize using knownbits, but that
would require checking that the 'bool' value is created with
some instruction that can be replaced with new icmp+logic.
https://alive2.llvm.org/ce/z/-KCfpa
Current codegen only supports scalarization of pointer inductions for
scalable VFs if they are uniform. After 3bebec659 we now may enter the
scalarization code path in VPWidenPointerInductionRecipe::execute for
scalable vectors.
Fall back to widening for scalable vectors if necessary.
This should fix a build failure when bootstrapping LLVM with SVE, e.g.
https://lab.llvm.org/buildbot/#/builders/176/builds/1723
This reverts commit fc9c59c355.
The patch triggers an assertion when building SPEC on X86. Reduced
reproducer shared at D107966.
Also reverts follow-up commit 11a09af76d.
This patch introduces a new VPLiveOut subclass of VPUser to model
exit values explicitly. The initial version handles exit values that
are neither part of induction or reduction chains nor first order
recurrence phis.
Fixes#51366, #54867, #55167, #55459
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123537
JumpThreading may convert selects into branch instructions,
in which case the condition needs to be frozen (as branch on
poison is immediate undefined behavior, unlike select on poison).
The necessary code for this is already in place, this just enables
the option.
Differential Revision: https://reviews.llvm.org/D125869
SLP vectorizer emits extracts for externally used vectorized scalars and
estimates the cost for each such extract. But in many cases these
scalars are input for insertelement instructions, forming buildvector,
and instead of extractelement/insertelement pair we can emit/cost
estimate shuffle(s) cost and generate series of shuffles, which can be
further optimized.
Tested using test-suite (+SPEC2017), the tests passed, SLP was able to
generate/vectorize more instructions in many cases and it allowed to reduce
number of re-vectorization attempts (where we could try to vectorize
buildector insertelements again and again).
Differential Revision: https://reviews.llvm.org/D107966
At the moment LV runs LoopSimplify and reconstructs LCSSA form after
generating the main vector loop and before generating the epilogue
vector loop.
In practice, this adds a new exit block for the scalar loop because the
middle block now also branches to the original exit block of the scalar
loop. It also requires adding a new LCSSA phi in the newly created exit
block.
This complicates things when modeling exit values in VPlan, because we
would need to update the VPlan for the epilogue loop to update the newly
created LCSSA phi node.
But none of that should be necessary, as all analysis requiring
loop-simplify form is already done at this point and LCSSA form of the
original loop is not broken.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D125810
Update clearReductionWrapFlags to use the VPlan def-use chain from the
reduction phi recipe to drop reduction wrap flags.
This addresses an existing FIXME and fixes a crash when instructions in
the reduction chain are not used and have been removed before VPlan
codegeneration.
Fixes#55540.
It doesn't matter which value we use for dead args, so let's switch
to poison, so we can eventually kill undef.
Reviewed By: aeubanks, fhahn
Differential Revision: https://reviews.llvm.org/D125983
The runtime check threshold should also restrict interleave count.
Otherwise, too many runtime checks will be generated for some cases.
Reviewed By: fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D122126
VPWidenMemoryInstruction also models stores which may not produce a value.
This can trip over analyses. Improve the modeling by only adding
VPValues for VPWidenMemoryInstructionRecipes modeling loads.
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
This patch changes the strategy for vectorizing freeze instrucion, from
replicating multiple times to widening according to selected VF.
Fixes#54992
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D125016
In this patch we add a function foldICmpInstWithConstantAllowUndef
to fold integer comparisons with a constant operand: icmp Pred X, C
where X is some kind of instruction and C is AllowUndef.
We move this fold to the new function, so that it can solve undef elts in a vector.
Reviewed By: spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D125220
The pattern matching and vectgorization for reductions was not very
effective. Some of of the possible reduction values were marked as
external arguments, SLP could not find some reduction patterns because
of too early attempt to vectorize pair of binops arguments, the cost of
consts reductions was not correct. Patch addresses these issues and
improves the analysis/cost estimation and vectorization of the
reductions.
The most significant changes in SLP.NumVectorInstructions:
Metric: SLP.NumVectorInstructions [140/14396]
Program results results0 diff
test-suite :: SingleSource/Benchmarks/Adobe-C++/loop_unroll.test 920.00 3548.00 285.7%
test-suite :: SingleSource/Benchmarks/BenchmarkGame/n-body.test 66.00 122.00 84.8%
test-suite :: MultiSource/Benchmarks/DOE-ProxyApps-C/miniGMG/miniGMG.test 100.00 128.00 28.0%
test-suite :: MultiSource/Benchmarks/Prolangs-C/TimberWolfMC/timberwolfmc.test 664.00 810.00 22.0%
test-suite :: MultiSource/Benchmarks/mafft/pairlocalalign.test 592.00 687.00 16.0%
test-suite :: MultiSource/Benchmarks/MiBench/consumer-lame/consumer-lame.test 402.00 426.00 6.0%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 1665.00 1745.00 4.8%
test-suite :: External/SPEC/CINT2017rate/500.perlbench_r/500.perlbench_r.test 135.00 139.00 3.0%
test-suite :: External/SPEC/CINT2017speed/600.perlbench_s/600.perlbench_s.test 135.00 139.00 3.0%
test-suite :: MultiSource/Benchmarks/7zip/7zip-benchmark.test 388.00 397.00 2.3%
test-suite :: MultiSource/Applications/JM/ldecod/ldecod.test 895.00 914.00 2.1%
test-suite :: MultiSource/Benchmarks/MiBench/telecomm-gsm/telecomm-gsm.test 240.00 244.00 1.7%
test-suite :: MultiSource/Benchmarks/mediabench/gsm/toast/toast.test 240.00 244.00 1.7%
test-suite :: External/SPEC/CINT2017speed/602.gcc_s/602.gcc_s.test 820.00 832.00 1.5%
test-suite :: External/SPEC/CINT2017rate/502.gcc_r/502.gcc_r.test 820.00 832.00 1.5%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 14804.00 14914.00 0.7%
test-suite :: MultiSource/Benchmarks/Bullet/bullet.test 8125.00 8183.00 0.7%
test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test 1330.00 1338.00 0.6%
test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test 1330.00 1338.00 0.6%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 9832.00 9880.00 0.5%
test-suite :: External/SPEC/CFP2017rate/511.povray_r/511.povray_r.test 5267.00 5291.00 0.5%
test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test 4018.00 4024.00 0.1%
test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test 4018.00 4024.00 0.1%
test-suite :: External/SPEC/CFP2017speed/644.nab_s/644.nab_s.test 426.00 424.00 -0.5%
test-suite :: External/SPEC/CFP2017rate/544.nab_r/544.nab_r.test 426.00 424.00 -0.5%
test-suite :: External/SPEC/CINT2017rate/541.leela_r/541.leela_r.test 201.00 192.00 -4.5%
test-suite :: External/SPEC/CINT2017speed/641.leela_s/641.leela_s.test 201.00 192.00 -4.5%
644.nab_s and 544.nab_r - reduced number of shuffles but increased number
of useful vectorized instructions.
641.leela_s and 541.leela_r - the function
`@_ZN9FastBoard25get_pattern3_augment_specEiib` is not inlined anymore
but its body gets vectorized successfully. Before, the function was
inlined twice and vectorized just after inlining, currently it is not
required. The vector code looks pretty similar, just like as it was before.
Differential Revision: https://reviews.llvm.org/D111574
When shifting by a byte-multiple:
bswap (shl X, Y) --> lshr (bswap X), Y
bswap (lshr X, Y) --> shl (bswap X), Y
This was limited to constants as a first step in D122010 / 60820e53ec ,
but issue #55327 shows a source example (and there's a test based on that here)
where a variable shift amount is used in this pattern.
Evaluation odering in function call arguments is implementation-dependent.
In fact, gcc evaluates bottom-top and clang does top-bottom.
Fixes#55283 partially.
Part of https://reviews.llvm.org/D125627
We could do better by inserting a bitcast from scalar int
to vector int or using an insertelement (the alternate test
does not crash because there's an independent fold like that).
But this doesn't seem like a likely pattern, so just bail out
for now.
Fixes issue #55516.
This code is valid for any icmp, so we can safely look through a
freeze when trying to find one.
A caveat here is that replaceFoldableUses() may not end up replacing
any uses in this case. It might make sense to use the freeze as the
context instruction (rather than the terminator) if there is a
freeze, to ensure that it always gets folded. This would require
some changes to how replaceFoldedUses() works though, as it
currently assumes that the value is valid at the end of the block.
The modified function was incorrectly (not unnecessarily) ignoring grandchild
loops, and this change fixes the bug. In particular, this fixes the handling of
the loop { inner, body }. The TODO in the same function is talking about the b1
self loop, which may be "unnecessarily" lost, but that is a different issue.
It's sufficient to just fold the icmp to true/false here, and then
let constant terminator folding take care of the rest.
It should be noted that while replaceFoldableUses() may not replace
all uses of the icmp, at least the use in the terminator we're
working on is always replaceable, so terminator constant folding
should be reliably enabled as a subsequent step.
%x umin_seq %y is currently expanded to %x == 0 ? 0 : umin(%x, %y).
This patch changes the expansion to umin(%x, freeze %y) instead
(https://alive2.llvm.org/ce/z/wujUhp).
The motivation for this change are the test cases affected by
D124910, where the freeze expansion ultimately produces better
optimization results. This is largely because
`(%x umin_seq %y) == %x` is a common expansion pattern, which
reliably optimizes in freeze representation, but only sometimes
with the zero comparison (in particular, if %x == 0 can fold to
something else, we generally won't be able to cover reasonable
code from this.)
Differential Revision: https://reviews.llvm.org/D125372
When performing runtime unrolling with multiple exits, one of the
earlier (non-latch) exits may exit the loop on the first iteration,
such that we never branch on the latch exit condition. As such, we
need to freeze the condition of the new branch that is introduced
before the loop, as it now executes unconditionally.
Differential Revision: https://reviews.llvm.org/D125754
This patch makes JumpThreading's ProcessImpliedCondition deal with frozen
conditions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84941
shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This extends the transform added with 0353c2c996.
If the casts are to a larger element type, the transform
reduces shuffle bit width, so that should be a win for
most codegen (if not, it can be inverted).
The transform was wrong in 3 ways:
1. It created an extra instruction when the source and dest types don't match.
2. It did not account for an extra use of the icmp, so could create 2 extra insts.
3. It favored bit hacks over icmp (icmp generally has better analysis).
This fixes#54692 (modeled by the PhaseOrdering tests).
This is a minimal step to fix the bug, but we should likely invert
this and the sibling transform for the "is negative" pattern too.
The backend should be able to invert this back to a shift if that
leads to better codegen.
This is a reduced try of 3794cc0e99 - that was reverted because
it could cause infinite loops by conflicting with the related
transforms in this block that create shifts.
Need to check if the reduction is still (not)cmp-select pattern min/max
reduction to avoid compiler crash during building list of reduction
operations. cmp-sel pattern provides 2 reduction operations, while
intrinsics - just one.
Those helpers model properties of a user and they should also be
available to non-recipe users. This will be used in D123537 for a new
exit value user.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D124936
JumpThreading intentionally does not force updating of the DT
during optimization, because this may be expensive when many CFG
updates and DT calculations are interleaved.
We shouldn't be fetching the DT just for the purpose of calling
isGuaranteedNotToBeUndefOrPoison(), especially as DT availability
doesn't even show benefit in tests.
This patch fixes a bug that generates unnecessary packing/unpacking structure code because of incorrectly handling lifetime intrinsic.
For example, a partition of an alloca may contain many slices:
```
Partition [0, 4):
Slice0: [0, 4) used by: load i32 addr;
Slice1: [0, 4) used by: store i32 v, addr;
Slice2: [0, 16) used by lifetime.start(16, addr);
```
When SROA determines if the partition can be promoted, lifetime.start is currently treated as a whole alloca load/store, so Slice0 and Slice1 cannot be promoted at this attempt,
but the packing/unpacking code for Slice0 and Slice1 has been generated.
After rewrite lifetime.start/end intrinsic, SROA tries again with Slice0 and Slice1 and finally promotes them, but redundant packing/unpacking code remaining in the IRs.
This patch changes promotability checking to ignore lifetime intrinsic (they will be rewritten to correct sizes later), so we can promote the real users (load/store) at the first attempt with optimal code.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124967
Checking whether two KnownBits are the same is somewhat common,
mainly in test code.
I don't think there is a lot of room for confusion with "determine
what the KnownBits for an icmp eq would be", as that has a
different result type (this is what the eq() method implements,
which returns Optional<bool>).
Differential Revision: https://reviews.llvm.org/D125692
When using counter relocations, two instructions are emitted to compute
the address of the counter variable.
```
%BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias>
%Addr = inttoptr i64 %BiasAdd to i64*
```
When promoting a counter, these instructions might not be available in
the block, so we need to copy these instructions.
This fixes https://github.com/llvm/llvm-project/issues/55125
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D125710
The existing transform was wrong in 3 ways:
1. It created an extra instruction when the source and dest types don't match.
2. It did not account for an extra use of the icmp, so could create 2 extra insts.
3. It favored bit hacks over icmp (icmp generally has better analysis).
This fixes#54692 (modeled by the PhaseOrdering tests).
This is a minimal step to fix the bug, but we should likely invert
the sibling transform for the "is negative" pattern too.
The backend should be able to invert this back to a shift if that
leads to better codegen.
Add a map from functions to load instructions that compute the profile bias. Previously we assumed that if the first instruction in the function was a load instruction, then it must be computing the bias. This was likely to work out because functions usually start with the `llvm.instrprof.increment` instruction, but optimizations could change this. For example, inlining into a non-profiled function.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D114319
This patch adds initial support for a pointer diff based runtime check
scheme for vectorization. This scheme requires fewer computations and
checks than the existing full overlap checking, if it is applicable.
The main idea is to only check if source and sink of a dependency are
far enough apart so the accesses won't overlap in the vector loop. To do
so, it is sufficient to compute the difference and compare it to the
`VF * UF * AccessSize`. It is sufficient to check
`(Sink - Src) <u VF * UF * AccessSize` to rule out a backwards
dependence in the vector loop with the given VF and UF. If Src >=u Sink,
there is not dependence preventing vectorization, hence the overflow
should not matter and using the ULT should be sufficient.
Note that the initial version is restricted in multiple ways:
1. Pointers must only either be read or written, by a single
instruction (this allows re-constructing source/sink for
dependences with the available information)
2. Source and sink pointers must be add-recs, with matching steps
3. The step must be a constant.
3. abs(step) == AccessSize.
Most of those restrictions can be relaxed in the future.
See https://github.com/llvm/llvm-project/issues/53590.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D119078
The patch simplifies some of the patterns as below
(A | (B & C0)) | (B & C1) -> A | (B & C0|C1)
((B & C0) | A) | (B & C1) -> (B & C0|C1) | A
In some scenarios like byte reverse on half word, we can see this pattern multiple times and this conversion can optimize these patterns.
Differential Revision: https://reviews.llvm.org/D124119
While select conditions can be poison, branch on poison is
immediate UB. As such, we need to freeze the condition when
converting a select into a branch.
Differential Revision: https://reviews.llvm.org/D125398
When the loop vectoriser encounters a known low trip count it tries
to create a single predicated loop in order to get the benefit of
vectorisation and eliminate the scalar tail. However, until now the
vectoriser prevented the use of scalable vectors in this case due
to concerns in the past about stability. I believe that tail-folded
loops using scalable vectors are now sufficiently well tested that
we can enable this. For the same reason I've also enabled it when
optimising for code size too.
Tests added here:
Transforms/LoopVectorize/AArch64/sve-low-trip-count.ll
Transforms/LoopVectorize/AArch64/sve-tail-folding-optsize.ll
Transforms/LoopVectorize/RISCV/low-trip-count.ll
Differential Revision: https://reviews.llvm.org/D121595
Under some circumstances, SCEVExpander will insert new instructions when
expanding a predicate, but the final result of the expansion can be a
false constant.
In those cases, the expanded instructions may later be used by other
expansions, e.g. the trip count. This may trigger an assertion during
SCEVExpander cleanup. To avoid this, always mark the result as used.
Fixes#55100.
There is a long function foldICmpInstWithConstant,
we can separate a function foldICmpBinOpWithConstant from it.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125457
If alternate node has only 2 instructions and the tree is already big
enough, better to skip the vectorization of such nodes, they are not
very profitable (the resulting code cotains 3 instructions instead of
original 2 scalars). SLP can try to vectorize the buildvector sequence
in the next attempt, if it is profitable.
Metric: SLP.NumVectorInstructions
Program SLP.NumVectorInstructions
results results0 diff
test-suite :: MultiSource/Benchmarks/DOE-ProxyApps-C/miniAMR/miniAMR.test 72.00 73.00 1.4%
test-suite :: MultiSource/Benchmarks/Prolangs-C/TimberWolfMC/timberwolfmc.test 1186.00 1198.00 1.0%
test-suite :: MultiSource/Benchmarks/DOE-ProxyApps-C++/miniFE/miniFE.test 241.00 242.00 0.4%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 2131.00 2139.00 0.4%
test-suite :: External/SPEC/CINT2017rate/523.xalancbmk_r/523.xalancbmk_r.test 6377.00 6384.00 0.1%
test-suite :: External/SPEC/CINT2017speed/623.xalancbmk_s/623.xalancbmk_s.test 6377.00 6384.00 0.1%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 12650.00 12658.00 0.1%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 26169.00 26147.00 -0.1%
test-suite :: MultiSource/Benchmarks/Trimaran/enc-3des/enc-3des.test 99.00 86.00 -13.1%
Gains:
526.blender_r - more vectorized trees.
enc-3des - same.
Others:
510.parest_r - no changes.
miniFE - same
623.xalancbmk_s - some (non-profitable) parts of the trees are not
vectorized.
523.xalancbmk_r - same
lencod - same
timberwolfmc - same
miniAMR - same
Differential Revision: https://reviews.llvm.org/D125571
If the insert indes was used already or is not constant, we should stop
looking for unique buildvector sequence, it mustbe splitted to
2 different buildvectors.
In InnerLoopVectorizer::getOrCreateVectorTripCount there is an
assert that the known minimum value for the VF is a power of 2
when tail-folding is enabled. However, for scalable vectors the
value of vscale may not be a power of 2, which means we have
to worry about the possibility of overflow. I have solved this
problem by adding preheader checks that prevent us from entering
the vector body if the canonical IV would overflow, i.e.
if ((IntMax - TripCount) < (VF * UF)) ... skip vector loop ...
Differential Revision: https://reviews.llvm.org/D125235
We commonly want to create either an inbounds or non-inbounds GEP
based on a boolean value, e.g. when preserving inbounds from
existing GEPs. Directly accept such a boolean in the API, rather
than requiring a ternary between CreateGEP and CreateInBoundsGEP.
This change is not entirely NFC, because we now preserve an
inbounds flag in a constant expression edge-case in InstCombine.
A first patch to use the reasoning in ConstraintElimination to simplify
sub with overflow to a regular sub, if the operation is guaranteed to
not overflow.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125264
This refactors RS4GC to cache results returned findBaseDefiningValue
and also gets rid of BaseDefiningValueResult by caching the
IsKnownBase flag for BDVs and bases.
Differential Revision: https://reviews.llvm.org/D125000
This patch fix bug left in D124503. We should do
sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) instead of
sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Y,Z)).
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125352
As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
This is similar to recent changes for urem and sdiv:
d428f09b2c99ef341ce9
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
Presumably, in real cases that are similar to the tests
where a subsequent transform removes the rem, we
will also be able to remove the freeze by seeing that
the parameter has 'noundef'.
The re-apply includes fixes to clang tests that were missed in
the original commit.
Original message:
Prior to this patch we would only set to undef the unused arguments of the
external functions. The rationale was that unused arguments of internal
functions wouldn't need to be turned into undef arguments because they
should have been simply eliminated by the time we reach that code.
This is actually not true because there are plenty of cases where we can't
remove unused arguments. For instance, if the internal function is used in
an indirect call, it may not be possible to change the function signature.
Yet, for statically known call-sites we would still like to mark the unused
arguments as undef.
This patch enables the "set undef arguments" optimization on internal
functions when we encounter cases where internal functions cannot be
optimized. I.e., whenever an internal function is marked "live".
Differential Revision: https://reviews.llvm.org/D124699
It makes sense to make a non-byval promotion attempt first and then
fall back to the byval one. The non-byval ('usual') promotion is
generally better, for example it does promotion even when a structure
has more elements than 'MaxElements' but not all of them are actually
used in the function.
Differential Revision: https://reviews.llvm.org/D124514
As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
This is similar to a recent change for urem:
d428f09b2c
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
Presumably, in real cases that are similar to the tests
where a subsequent transform removes the select, we
will also be able to remove the freeze by seeing that
the parameter has 'noundef'.
As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
If there is a freeze %x, we currently replace all other uses of %x
with freeze %x -- as long as they are dominated by the freeze
instruction. This patch extends this behavior to cases where we
did not originally dominate the use by moving the freeze
instruction directly after the definition of the frozen value.
The motivation can be seen in test @combine_and_after_freezing_uses:
Canonicalizing everything to freeze %x allows folds that are based
on value identity (i.e. same operand occurring in two places) to
trigger. This also covers the case from D125248.
Differential Revision: https://reviews.llvm.org/D125321
Further improvement of the cost model for the scalars used in
buildvectors sequences. The main functionality is outlined into
a separate function.
The cost is calculated in the following way:
1. If the Base vector is not undef vector, resizing the very first mask to
have common VF and perform action for 2 input vectors (including non-undef
Base). Other shuffle masks are combined with the resulting after the 1 stage and processed as a shuffle of 2 elements.
2. If the Base is undef vector and have only 1 shuffle mask, perform the
action only for 1 vector with the given mask, if it is not the identity
mask.
3. If > 2 masks are used, perform serie of shuffle actions for 2 vectors,
combing the masks properly between the steps.
The original implementation misses the very first analysis for the Base
vector, so the cost might too optimistic in some cases. But it improves
the cost for the insertelements which are part of the current SLP graph.
Part of D107966.
Differential Revision: https://reviews.llvm.org/D115750
With opaque pointers, both the stored value and the address can be the
same. Only consider the recipe using the first lane only *if* the
address is not stored.
Fixes#55375.
We're having a hard time booting the ARCH=i386 Linux kernel with clang
after removing -ffreestanding because instcombine was dropping inreg
from callers during libcall simplification, but not the callees defined
in different translation units. This led the callers and callees to have
wildly different calling conventions, which (predictably) blew up at
runtime.
Infer the inreg param attrs on function declarations from the module
metadata "NumRegisterParameters." This allows us to boot the ARCH=i386
Linux kernel (w/ -ffreestanding removed).
Fixes: https://github.com/llvm/llvm-project/issues/53645
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125285
The current reordering scheme only checks the ordering of in-tree operands.
There are some cases, however, where we need to adjust the ordering based on
the ordering of a future SLP-tree who's instructions are not part of the
current tree, but are external users.
This patch is a simple implementation of this. We keep track of scalar stores
that are users of TreeEntries and if they look profitable to vectorize, then
we keep track of their ordering. During the reordering step we take this new
index order into account. This can remove some shuffles in cases like in the
lit test.
Differential Revision: https://reviews.llvm.org/D125111
shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This is similar to a recent transform with fneg ( b331a7ebc1 ),
but this is intentionally the most conservative first step to
try to avoid regressions in codegen. There are several
restrictions that could be removed as follow-up enhancements.
Note that a cast with a unary shuffle is currently canonicalized
in the other direction (shuffle after cast - D103038 ). We might
want to invert that to be consistent with this patch.
Previously we took the old name and always appended a numberic suffix.
Since we're doing a 1:1 replacement, it's clearer to keep the original
name exactly.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D125281
This makes the output IR more readable since we're doing a one to
one replacement.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D125280
The EnableReuseStorageInFrame option is designed for testing only.
But it is better to use *_PASS_WITH_PARAMS macro to keep consistent with
other passes.
30a12f3f63 switched the type check
to use the GEP result type rather than the GEP operand type.
However, the GEP result types may match even if the operand types
don't, in case GEPs with scalar/vector base and vector index
are compared.
Fixes https://github.com/llvm/llvm-project/issues/55363.
This is a following cleanup for the previous work D123918. I missed
serveral places which still use legacy pass managers. This patch tries
to remove them.
When a callee function is inlined via an invoke instruction, every function call inside the callee, if not an invoke, will be converted to an invoke after cloned to the caller body. I found that during the conversion the !prof metadata was dropped. This in turned caused a cloned indirect call not properly promoted in subsequent passes.
The particular scenario I was investigating was with AutoFDO and thinLTO. In prelink, no ICP was triggered (neither by the sample loader nor PGO ICP), no indirect call was promoted. This is because 1) the particular indirect call did not have inlined samples; and 2) PGO ICP was intentionally disabled. After inlining, the prof metadata was dropped. Then in postlink, PGO ICP jumped in but didn't do anything. Thus the opportunity was missed.
I'm making a simple fix to preserve !prof metadata when converting call to invoke.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D125249
If the same scalar is inserted several times into the same buildvector,
the mask index can be used already. In this case need to check, that
this scalar is already part of the vectorized buildvector.
We can try to vectorize number of stores less than MinVecRegSize
/ scalar_value_size, if it is allowed by target. Gives an extra
opportunity for the vectorization.
Fixes PR54985.
Differential Revision: https://reviews.llvm.org/D124284
Need to use actual index instead of the tree entry position, since the
insert index may be different than 0. It mean, that we vectorized part
of the buildvector starting from not initial insertelement instruction
beause of some reason.
Given a commutative reduction leading from a shuffle, the order of the
lanes on the shuffle are not important for the result. This means we can
reorder the shuffle to something simpler, which we try shuffling the
first vector lanes first. This was D123494.
The new shuffle may not be profitable though, and if it is not we can
try the folding of select shuffles from D123911. This, with some
adjustment as the output lane ordering is now unimportant, can allow the
final shuffle to simplify given the inputs to the patterns from D123911.
Where as each transformation on their own are not profitable, the
combination is.
We can only support a single shuffle when called from reductions, but we
are able to sort the ReconstructMask, potentially allowing it to
simplify to an identity or concat mask.
Differential Revision: https://reviews.llvm.org/D125086
When a PHINode has an incoming block from outside the region, it must be handled specially when assigning a global value number to each incoming value. A PHINode has multiple predecessors, and we must handle this case rather than only the single predecessor case.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D124777
Given a load without a better order, this patch partially sorts the
elements to form clusters of adjacent elements in memory. These clusters
can potentially be loaded in fewer loads, meaning less overall shuffling
(for example loading v4i8 clusters of a v16i8 as a single f32 loads, as
opposed to multiple independent bytes loads and inserts).
Differential Revision: https://reviews.llvm.org/D122145
As shown in https://github.com/llvm/llvm-project/issues/55150 -
the existing fold may be wrong when converting to a signed value.
This is a quick fix to avoid the miscompile.
I added tests/comments for all of the signed/unsigned combinations
at either side of the boundary width, and tried to confirm with Alive2:
https://alive2.llvm.org/ce/z/3p9DSu
There are already some TODO items in the test file that suggest
possible refinements, so the regression with ui->FP->si is probably ok.
It seems unlikely that we'd see these kind of edge cases with
non-byte-width integer types in real code. The potential miscompile
went undetected for several years.
This and 747c6a0c73fixes#55150.
Differential Revision: https://reviews.llvm.org/D124692
If a constrained intrinsic call was replaced by some value, it was not
removed in some cases. The dangling instruction resulted in useless
instructions executed in runtime. It happened because constrained
intrinsics usually have side effect, it is used to model the interaction
with floating-point environment. In some cases side effect is actually
absent or can be ignored.
This change adds specific treatment of constrained intrinsics so that
their side effect can be removed if it actually absents.
Differential Revision: https://reviews.llvm.org/D118426
Splatting a bit of constant-index across a value:
sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
If the dest type is different, use a cast (adjust use check).
https://alive2.llvm.org/ce/z/acAan3
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D124590
For the unary shuffle pattern, this is opposite to what we try
to do with binops, but it seems better to keep it consistent
with the motivating binary shuffle pattern. On that, it is
clearly better on the usual no-extra uses case.
There is a chance that this will pull an fneg away from some
other binop and cause a regression in codegen, but that should
be invertible in the backend. The transform is birectional:
https://alive2.llvm.org/ce/z/kKaKCUhttps://alive2.llvm.org/ce/z/3DesfwFixes#45631
Try to push an icmp into a select even if the icmp operand isn't
constant - perform a generic SimplifyICmpInst instead.
This doesn't appear to impact compile-time much, and forming
logical and/or is generally profitable, as we have very good
support for them.
D113035 enhanced the matching of bitwise selects from vector types. This
change unfortunately introduced crashes as it tries to cast scalable
vector types to integers.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D124997
After D97756, collectHomogenousInstGraphLoopInvariants may collect
conditions for both logical ANDs and logical ORs in case the root is a
select that matches both logical AND & OR.
This means the function won't return invariant values of either AND/OR
chains, but both. This can result in incorrect transformations.
See llvm/test/Transforms/SimpleLoopUnswitch/trivial-unswitch-logical-and-or.ll.
Without the patch, Alive2 rejects the modified tests with:
Source and target don't have the same return domain.
Note that this also applies to the test case added in D97756
(@test_partial_condition_unswitch_or_select). We can't unswitch on
%cond6, because the graph leading to it contains and AND and an OR.
This only fixes trivial unswitching for now, but a similar problem
likely exists with non-trivial unswitching.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124526
Factor our InstrumentationIRBuilder and share it between ThreadSanitizer
and SanitizerCoverage. Simplify its usage at the same time (use function
of passed Instruction or BasicBlock).
This class may be used in other instrumentation passes in future.
NFCI.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D125038
This patch adds a combine to attempt to reduce the costs of certain
select-shuffle patterns. The form of code it attempts to detect is:
%x = shuffle ...
%y = shuffle ...
%a = binop %x, %y
%b = binop %x, %y
shuffle %a, %b, selectmask
A classic select-mask will pick items from each lane of a or b. These
do not always have a great lowering on many architectures. This patch
attempts to pack a and b into the lower elements, creating a differently
ordered shuffle for reconstructing the orignal which may be better than
the select mask. This can be better for performance, especially if less
elements of a and b need to be computed and the input shuffles are
cheaper.
Because select-masks are just one form of shuffle, we generalize to any
mask. So long as the backend has decent costmodel for the shuffles, this
can generally improve things when they come up. For more basic cost
models the folds do not appear to be profitable, not getting past the
cost checks.
Differential Revision: https://reviews.llvm.org/D123911
Re-materialize for debug instructions would cause a different code
generated if we enabled `-g`. This is bad. So we disable to
re-materialize for debug instructions.
When building with debug info enabled, some load/store instructions do
not have a DebugLocation attached. When using the default IRBuilder, it
attempts to copy the DebugLocation from the insertion-point instruction.
When there's no DebugLocation, no attempt is made to add one.
This is problematic for inserted calls, where the enclosing function has
debug info but the call ends up without a DebugLocation in e.g. LTO
builds that verify that both the enclosing function and calls to
inlinable functions have debug info attached.
This issue was noticed in Linux kernel KCSAN builds with LTO and debug
info enabled:
| ...
| inlinable function call in a function with debug info must have a !dbg location
| call void @__tsan_read8(i8* %432)
| ...
To fix, ensure that all calls to the runtime have a DebugLocation
attached, where the possibility exists that the insertion-point might
not have any DebugLocation attached to it.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D124937
Further improvement of the cost model for the scalars used in
buildvectors sequences. The main functionality is outlined into
a separate function.
The cost is calculated in the following way:
1. If the Base vector is not undef vector, resizing the very first mask to
have common VF and perform action for 2 input vectors (including non-undef
Base). Other shuffle masks are combined with the resulting after the 1 stage and processed as a shuffle of 2 elements.
2. If the Base is undef vector and have only 1 shuffle mask, perform the
action only for 1 vector with the given mask, if it is not the identity
mask.
3. If > 2 masks are used, perform serie of shuffle actions for 2 vectors,
combing the masks properly between the steps.
The original implementation misses the very first analysis for the Base
vector, so the cost might too optimistic in some cases. But it improves
the cost for the insertelements which are part of the current SLP graph.
Part of D107966.
Differential Revision: https://reviews.llvm.org/D115750
We cannot skip the freezing the condition if the unswitched branch
executes, if the condition is a chain of ANDs/ORs. For example, if if we
have an AND %c1, %c2 with %c1 == undef and %c2 == 0, there would be no
branch on undef in the original code, but a branch on undef if we
unswitch %c1.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124603
If a constrained intrinsic call was replaced by some value, it was not
removed in some cases. The dangling instruction resulted in useless
instructions executed in runtime. It happened because constrained
intrinsics usually have side effect, it is used to model the interaction
with floating-point environment. In some cases it is correct behavior
but often the side effect is actually absent or can be ignored.
This change adds specific treatment of constrained intrinsics so that
their side effect can be removed if it actually absents.
Differential Revision: https://reviews.llvm.org/D118426
This patch switches the PGO implementation on AIX from using the runtime
registration-based section tracking to the __start_SECNAME/__stop_SECNAME
based. In order to enable the recognition of __start_SECNAME/__stop_SECNAME
symbols in the AIX linker, the -bdbg:namedsects:ss needs to be used.
Reviewed By: jsji, MaskRay, davidxl
Differential Revision: https://reviews.llvm.org/D124857
This check is in the related fold for binops,
but it was missed when the code was adapted
for intrinsics in 432c199e84. The new test
would crash when trying to create a new
intrinsic with mismatched types.
This extends 432c199e84 and 9c4770eaab with an intrinsic
cited directly in issue #46238
Eventually, we will want to use llvm::isTriviallyVectorizable()
or create some new API for this list, but for now, I am intentionally
making a minimum change to reduce risk and only affect an intrinsic
with regression tests in place.
https://alive2.llvm.org/ce/z/sD-JVv
This extends 432c199e84 with a 3 arg intrinsic to demonstrate
that the code works with the extra operand.
Eventually, we will want to use llvm::isTriviallyVectorizable()
or create some new API for this list, but for now, I am intentionally
making a minimum change to reduce risk and only affect an intrinsic
with regression tests in place.
As a follow-up to D124632, I'm turning on unlimited size caps for inlining with preinlined profile. It should be safe as a preinlined profile has "bounded" inline contexts.
No noticeable size or perf delta was seen with two of our internal large services, but I think this is still a good change to be consistent with the other case.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D124793
The two fields have the same meaning. Their values come from the reader. Therefore I'm removing one.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D124788
This is an intrinsic version of the existing fold for binops.
As a first step, I only allowed min/max, but the code is set
up to make adding more intrinsics easy (with more or less than
2 arguments).
This (and possible follow-ups) are discussed in issue #46238.
Per feedback on D123086 after submit.
Also added a test for vec_malloc et al attribute inference to show it's
doing the right thing.
The new tests exposed a defect, corrected by adding vec_free to the list of
free functions in MemoryBuiltins.cpp, which had been overlooked all the
way back in D94710, over a year ago.
Differential Revision: https://reviews.llvm.org/D124859
Adds ability to vectorize loops containing a store to a loop-invariant
address as part of a reduction that isn't converted to SSA form due to
lack of aliasing info. Runtime checks are generated to ensure the store
does not alias any other accesses in the loop.
Ordered fadd reductions are not yet supported.
Differential Revision: https://reviews.llvm.org/D110235
This adds fptosi_sat and fptoui_sat to the list of trivially
vectorizable functions, mainly so that the loop vectorizer can vectorize
the instruction. Marking them as trivially vectorizable also allows them
to be SLP vectorized, and Scalarized.
The signature of a fptosi_sat requires two type overrides
(@llvm.fptosi.sat.v2i32.v2f32), unlike other intrinsics that often only
take a single. This patch alters hasVectorInstrinsicOverloadedScalarOpd
to isVectorIntrinsicWithOverloadTypeAtArg, so that it can mark the first
operand of the intrinsic as a overloaded (but not scalar) operand.
Differential Revision: https://reviews.llvm.org/D124358
We don't need to insert a load of the dynamic shadow address unless there
are interesting memory accesses to profile.
Split out of D124703.
Differential Revision: https://reviews.llvm.org/D124797
Suppress instrumentation of PGO counter accesses, which is unnecessary
and costly. Also suppress accesses to other compiler inserted variables
starting with "__llvm". This is a slightly expanded variant of what is
done for tsan in shouldInstrumentReadWriteFromAddress.
Differential Revision: https://reviews.llvm.org/D124703
Currently SLP vectorizer walks through the instructions and selects
3 main classes of values: 1) reduction operations - instructions with same
reduction opcode (add, mul, min/max, etc.), which build the reduction,
2) reduced values - instructions with the same opcodes, but different
from the reduction opcode, 3) extra arguments - all other values,
instructions from the different basic block rather than the root node,
instructions with to many/less uses.
This scheme is not very efficient. It excludes some instructions and all
non-instruction values from the reductions (constants, proficient
gathers), to many possibly reduced values are marked as extra arguments.
Patch improves this process by introducing a bit extended analysis
stage. During this stage, we still try to select 3 classes of the
values: 1) reduction operations - same as before, 2) possibly reduced
values - all instructions from the current block/non-instructions, which
may build a vectorization tree, 3) extra arguments - instructions from
the different basic blocks. Additionally, an extra sorting of the
possibly reduced values occurs to build the scalar sequences which
highly likely will bed vectorized, e.g. loads are grouped by the
distance between them, constants are grouped together, cmp instructions
are sorted by their compare types and predicates, extractelement
instructions are sorted by the vector operand, etc. Also, these groups
are reordered by their length so the longest group is the first in the
list of the possibly reduced values.
The vectorization process tries to emit the reductions for all these
groups. These reductions, remaining non-vectorized possible reduced
values and extra arguments are then combined into the final expression
just like it was before.
Differential Revision: https://reviews.llvm.org/D114171
'Widen' recipe are only used when actual vector values are generated.
Fix tryToWidenCall to do not create VPWidenCallRecipes for scalar vector
factors.
This was exposed by D123720, because the widened recipes are considered
vector users.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D124718
Prior to this patch we would only set to undef the unused arguments of the
external functions. The rationale was that unused arguments of internal
functions wouldn't need to be turned into undef arguments because they
should have been simply eliminated by the time we reach that code.
This is actually not true because there are plenty of cases where we can't
remove unused arguments. For instance, if the internal function is used in
an indirect call, it may not be possible to change the function signature.
Yet, for statically known call-sites we would still like to mark the unused
arguments as undef.
This patch enables the "set undef arguments" optimization on internal
functions when we encounter cases where internal functions cannot be
optimized. I.e., whenever an internal function is marked "live".
Differential Revision: https://reviews.llvm.org/D124699
libcalls." (was 0f8c626). This reverts commit 14d9390.
The patch previously failed to recognize cases where user had defined a
function alias with an identical name as that of the library
function. Module::getFunction() would then return nullptr which is what the
sanitizer discovered.
In this updated version a new function isLibFuncEmittable() has as well been
introduced which is now used instead of TLI->has() anytime a library function
is to be emitted . It additionally also makes sure there is e.g. no function
alias with the same name in the module.
Reviewed By: Eli Friedman
Differential Revision: https://reviews.llvm.org/D123198
If there are pre-existing dead instructions, the order we visit replaced
values can cause us sometimes to not delete dead instructions.
The added test non-deterministically failed without the change.
Normally the index type will already be canonicalized here, but
this is not guaranteed depending on visitation order. The code
was already accounting for a potentially needed sext, but a trunc
may also be needed.
Add a ConstantExpr::getSExtOrTrunc() helper method to make this
simpler. This matches the corresponding IRBuilder method in behavior.
Fixes https://github.com/llvm/llvm-project/issues/55228.
Per the guidance in
https://llvm.org/docs/Atomics.html#atomics-and-ir-optimization,
an atomic load from a constant global can be dropped, as there can
be no stores to synchronize with. Any write to the constant global
would be UB.
IPSCCP will already drop such loads, but the main helper in Local
doesn't recognize this currently. This is motivated by D118387.
Differential Revision: https://reviews.llvm.org/D124241
X86 codegen uses function attribute `min-legal-vector-width` to select the proper ABI. The intention of the attribute is to reflect user's requirement when they passing or returning vector arguments. So Clang front-end will iterate the vector arguments and set `min-legal-vector-width` to the width of the maximum for both caller and callee.
It is assumed any middle end optimizations won't care of the attribute expect inlining and argument promotion.
- For inlining, we will propagate the attribute of inlined functions because the inlining functions become the newer caller.
- For argument promotion, we check the `min-legal-vector-width` of the caller and callee and refuse to promote when they don't match.
The problem comes from the optimizations' combination, as shown by https://godbolt.org/z/zo3hba8xW. The caller `foo` has two callees `bar` and `baz`. When doing argument promotion, both `foo` and `bar` has the same `min-legal-vector-width`. So the argument was promoted to vector. Then the inlining inlines `baz` to `foo` and updates `min-legal-vector-width`, which results in ABI mismatch between `foo` and `bar`.
This patch fixes the problem by expanding the concept of `min-legal-vector-width` to indicator of functions arguments. That says, any passes touch functions arguments have to set `min-legal-vector-width` to the value reflects the width of vector arguments. It makes sense to me because any arguments modifications are ABI related and should response for the ABI compatibility.
Differential Revision: https://reviews.llvm.org/D123284
In some cases, it is not enough to freeze the final AND/OR operation
when chaining a number of invariant conditions together.
After creating a chain of ANDs/ORs, we assume all unswitched operands to
be either true or false. But if any of the operands is poison, the rest
of the operands could have any value after branching on the frozen
condition.
To avoid that, freeze individual operands, if needed. In some cases this
may lead to unnecessary freezes, but it seems required at least for some
cases (see trivial-unswitch-freeze-individual-conditions.ll)
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124554
Trivial unswitching can also introduce new branches on undef/poison.
Freeze the conditions if needed.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124549
This patch removes an old hack in visitSelectInst that was written to avoid miscompilation bugs in loop unswitch.
(Added via https://reviews.llvm.org/D35811)
The legacy loop unswitch pass will be removed after D124376, and the new simple loop unswitch pass correctly uses freeze to avoid introducing UB after D124252.
Since the hack is not necessary anymore, this patch removes it.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124426
We have seen that the prioirty inliner delivered on-par performance with the old inliner for probe-only CSSPGO profile, as long as without a size budget. I'm turning on the priority inliner for probe-only profile by default.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D124632
To be more clear and definitive, I'm renaming `ProfileIsCSFlat` back to `ProfileIsCS` which stands for full context-sensitive flat profiles. `ProfileIsCSNested` is now renamed to `ProfileIsPreInlined` and is extended to be applicable for CS flat profiles too. More specifically, `ProfileIsPreInlined` is for any kind of profiles (flat or nested) that contain 'ShouldBeInlined' contexts. The flag is encoded in the profile summary section for extbinary profiles and is computed on-the-fly for text profiles.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D122602
TI->getBitWidth can be > 64 and in those cases the shift will be UB due
to the exponent being too large.
To fix this, cap the shift at 63. I think this should work out fine,
because TableSize is itself a 64 bit type and the maximum table size
must fit in the type. Also, if we would underestimate the size here, at
most we get an extra ZExt.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D124608
Similar to c515b2f39e, If there are no loops in the function as seen
through LI, we should avoid computing the remaining expensive analyses
(such as SCEV, BPI). Reordered the analyses requests and early return
if there are no loops.
The logic of avoiding expensive analyses is applied to LoopVectorizer,
LoopLoadElimination and LoopUnrollPass, i.e. all function passes which operate
on loops.
This is an NFC with compile time improvement.
Differential Revision: https://reviews.llvm.org/D124529
This removes memset with undef char. We already do this for stores
of undef value.
This comes with the caveat that this optimization is not, strictly
speaking, legal for undef values, because we might be overwriting
a poison value. However, our entire load/store model currently still
operates on undef values, so we need to support undef here as well
for internal consistency.
Once https://github.com/llvm/llvm-project/issues/52930 is resolved,
these and related folds can be limited to poison -- I've added
FIXMEs to that effect.
Differential Revision: https://reviews.llvm.org/D124173
The name CountRoundDown is potentially misleading, as the number of
iterations can be rounded up when folding the tail.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D119681
This is an edge-case where we don't convert to bitwise and/or based
on implies poison reasoning, so explicitly try to perform the fold
in logical form. The transform itself is poison-safe, as both icmps
are based on the same value and any nowrap flags are discarded as
part of the fold (https://alive2.llvm.org/ce/z/aCwC8b for the used
example).
This fold handles a special subset of foldAndOrOfICmpsUsingRanges(),
use the more generic implementation instead.
The result can differ if a representation using a range comparison
is possible, in which case that is preferred over masking. There is
a canonicalization opportunity here.
This is the de Morgan conjugated variant of the existing fold for
ors. Implement this by switching the range code to always work
on ors and perform invert operands at the start and end. This makes
reasoning easier and makes the extension more obviosuly correct.
The legacy LoopUnswitch pass is only used in the legacy pass manager
pipeline, which is deprecated.
The NewPM replacement is SimpleLoopUnswitch and I think it is time to
remove the legacy LoopUnswitch code.
Fixes#31000.
Reviewed By: aeubanks, Meinersbur, asbirlea
Differential Revision: https://reviews.llvm.org/D124376
We can express this fold more naturally when working on the constant
range implementation. This change is not entirely NFC, because the
code now also handles cases that don't match the precise pattern
this previously looked for, e.g. we can omit an add on one of the
ranges.
I think this sort comparator was overly complex, and the windows
expensive check bot agreed, failing as it was not giving a strict weak
ordering. Change it to use the comparison of the mask values as unsigned
integers. This should sort the undef elements to the end whilst keeping
X<Y otherwise.
Replace the condition value with the known constant value on the
threaded edge. This happens implicitly with phi threading because
we replace with the incoming value, but not for non-phi threading.
SimplifyCFG implements basic jump threading, if a branch is
performed on a phi node with constant operands. However,
InstCombine canonicalizes such phis to the condition value of a
previous branch, if possible. SimplifyCFG does support this as
well, but only in the very limited case where the same condition
is used in a direct predecessor -- notably, this does not include
the common diamond pattern (i.e. two consecutive if/elses on the
same condition).
This patch extends the code to look back a limited number of
blocks to find a branch on the same value, rather than only
looking at the direct predecessor.
Fixes https://github.com/llvm/llvm-project/issues/54980.
Differential Revision: https://reviews.llvm.org/D124159
Given a shuffle feeding a commutative reduction, the lane ordering of
the shuffle will not alter the result. This is also true if there are a
number of operations between the reduction and the shuffle, providing
they only operate lane-wise. This patch searches for cases like that in
Vector Combine, allowing us to check the cost of the shuffle vs an
in-order identity shuffle and replace the order if possible. This only
handles a single shuffle at the moment to keep things simple, and is
able to ignore splats that produce results where every result is the
same.
This is a more powerful version of a combine that already happens in
instrcombine, capable of optimizing more cases by looking through more
instructions and being able to cost the shuffle.
Differential Revision: https://reviews.llvm.org/D123494
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.
Differential Revision: https://reviews.llvm.org/D100486
The structure ArgPart and alias OffsetAndArgPart have been moved
into the anonymous namespace. NFC.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D124617
The condition should be 'ArgParts.size() > MaxElements', so that if we
have exactly 3 elements in the 'ArgParts' vector, the promotion should
be allowed because the 'MaxElement' threshold is not exceeded yet.
The default value for 'MaxElement' has been decreased to 2 in order
to avoid an actual change in argument promoting behavior. However,
this changes byval argument transformation behavior by allowing
adding not more than 2 arguments to the function instead of 3 allowed
before.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D124178
Remove one of the last remaining uses of ::needsVectorIV, preparing for
its removal. Now that usesScalars is available and based on the
information explicit in VPlan, there is no need to use the pre-computed
needsVectorIV.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123720
Some loop counters ('i', 'e') and variables ('type') were named not
in accordance with the code style and clang-tidy issues warnings
about the using of such variables. This patch renames the variables
and fixes some typos in the comments within the source file.
Differential Revision: https://reviews.llvm.org/D123662
When using opaque pointers, convert GEPs into offset representation
of the form P + V1 * Scale1 + V2 * Scale2 + ... + ConstantOffset.
This allows us to recognize equivalent address calculations even if
the GEPs don't use the same source element type.
This fixes an opaque pointer codegen regression seen in rustc.
Differential Revision: https://reviews.llvm.org/D124527
They can already be available, and even if not, DT/LI can be available.
We should not recompute them. Old PM is unchanged because it would
require changing dependencies, and we don't care enough about it.
Differential Revision: https://reviews.llvm.org/D124439
Reviewed By: nikic, aeubanks
isNoopAddrSpaceCast is expecting SrcAS is different from DestAS.
If the two AS are the same, consider ptrtoint/inttoptr as noop cast.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D123573
Previously all entries in global_ctors had to have the void()* type and
we'd skip evaluating bitcasted functions. With opaque pointers we may
see the function directly.
Fixes#55147.
Reviewed By: #opaque-pointers, nikic
Differential Revision: https://reviews.llvm.org/D124553
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove ThreadSanitizerLegacyPass.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124209
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.
Differential Revision: https://reviews.llvm.org/D100486
When a block containing llvm.coro.id is cloned during CHR, it inserts an invalid
PHI node with token type to the beginning of the block containing llvm.coro.begin.
To avoid such case, we exclude regions with llvm.coro.id.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D124418
IRCE is a function pass that operates on loops. If there are no loops in
the function (as seen through LI), we should avoid computing the
remaining expensive analyses (such as BPI). Reordered the analyses
requests and early return if there are no loops. This is an NFC with
compile time improvement.
The same will be done in a follow-up patch for the loop vectorizer.
Reviewed-By: nikic
Differential Revision: https://reviews.llvm.org/D124478
This relands commit 8f550368b1.
The test is amended with REQUIRES: x86-registered-target, in line with
the other debuginfo-scev-salvage tests.
Differential Revision: https://reviews.llvm.org/D120169
Second of two patches to extend SCEV-based salvaging to dbg.value
intrinsics that have multiple location ops pre-LSR. This second patch
adds the core implementation.
Reviewers: @StephenTozer, @djtodoro
Differential Revision: https://reviews.llvm.org/D120169
First of two patches that extends SCEV-based salvaging to enable
salvaging of dbg.value instrinsics that have multiple locations ops
before the Loop Strength Reduction pass.
The existing single-op SCEV-based salvaging can generate variadic
dbg.value intrinsics in order to salvage a dbg.value that has a single
location op. If a dbg.value has multiple location ops before LSR, and
LSR optimises away one or more of the location operands, then currently
no salvaging will be attempted.
Salvaging can now be added, but first this patch cleans up consistency
in both the code and comments, and applies some refactoring to make
application of the new salvaging implementation more straightforward.
- Use SCEVDbgValueBuilder for both types of recovery expressions:
IV-offset based and iteration count based.
- Combine the functions that write the final DIExpression.
- Move some static functions into member functions.
Reviewers: @Orlando
Differential Revision: https://reviews.llvm.org/D120168
Currently, two GEPs will only be combined if the result element
type of one is the same as the source element type of the other.
However, this means we may miss folding opportunities where the
second GEP could be rewritten using a different element type. This
is especially relevant for opaque pointers, where constant GEPs
often use i8 element type.
Address this by converting GEP indices to offsets, adding them,
and then converting them back to indices. The first (inner) GEP
is allowed to have variable indices as well, in which case only
the constant suffix is converted into an offset.
This should address the regression reported in
https://reviews.llvm.org/D123300#3467615.
Differential Revision: https://reviews.llvm.org/D124459
I found this bug when performing a two-stage build of clang with
Function Specialization enabled and tuned aggressively. The crash
appears only on release builds.
Fixes https://github.com/llvm/llvm-project/issues/55000.
Before accessing the contents of the ArgInfo iterator inside
SCCPInstVisitor::markArgInFuncSpecialization, we should be
checking that the iterator is valid.
Differential Revision: https://reviews.llvm.org/D124114
canonicalizeClampLike canonicalizes the ule/ugt comparisons to ult/uge,
respectively. However, it does not update the variable holding the
comparison predicate type after doing this. Later code fails to handle
the non-canonical predicate type (specifically, the swap of
ThresholdLowIncl and ThresholdHighExcl when Pred0 has been canonicalized
from ugt to uge). This leads to the miscompile reported in PR53252. Fix
this by updating the comparison predicate after canonicalizing.
Fixes#53252
Differential Revision: https://reviews.llvm.org/D119690
The callback is expected to create a branch to the ContinuationBB (sometimes called FiniBB in some lambdas) argument when finishing. This creates problems:
1. The InsertPoint used for CodeGenIP does not need to be the end of a block. If it is not, a naive callback will insert a branch instruction into the middle of the block.
2. The BasicBlock the CodeGenIP is pointing to may or may not have a terminator. There is an conflict where to branch to if the block already has a terminator.
3. Some API functions work only with block having a terminator. Some workarounds have been used to insert a temporary terminator that is removed again.
4. Some callbacks are sensitive to whether the BasicBlock has a terminator or not. This creates a callback ordering problem where different callback may have different behaviour depending on whether a previous callback created a terminator or not. The problem also exists for FinalizeCallbackTy where some callbacks do create branch to another "continue" block, but unlike BodyGenCallbackTy does not receive the target as argument. This is not addressed in this patch.
With this patch, the callback receives an CodeGenIP into a BasicBlock where to insert instructions. If it has to insert control flow, it can split the block at that position as needed but otherwise no separate ContinuationBB is needed. In particular, a callback can be empty without breaking the emitted IR. If the caller needs the control flow to branch to a specific target, it can insert the branch instruction itself and pass an InsertPoint before the terminator to the callback.
Certain frontends such as Clang may expect the current IRBuilder position to be at the end of a basic block. In this case its callbacks must split the block at CodeGenIP before setting the IRBuilder position such that the instructions after CodeGenIP are moved to another basic block and before returning create a new branch instruction to the split block.
Some utility functions such as `splitBB` are supporting correct splitting of BasicBlocks, independent of whether they have a terminator or not, returning/setting the InsertPoint of an IRBuilder to the end of split predecessor block, and optionally omitting creating a branch to the split successor block to be added later.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D118409
We can always replace the undef elements in a vector constant
with regular constants to get rid of the freeze:
https://alive2.llvm.org/ce/z/nfRb4F
The select diffs show that we might do better by adjusting the
logic for a frozen select condition. We may also want to refine
the vector constant replacement to consider forming a splat.
Differential Revision: https://reviews.llvm.org/D123962
Before this patch `Args` was used to pass a broadcat's arguments by SLP.
This patch changes this. `Args` is now used for passing the operands of
the shuffle.
Differential Revision: https://reviews.llvm.org/D124202
This continues the push away from hard-coded knowledge about functions
towards attributes. We'll use this to annotate free(), realloc() and
cousins and obviate the hard-coded list of free functions.
Differential Revision: https://reviews.llvm.org/D123083
This reorganizes the code as a preparation for D123865:
* Use more descriptive names for variables
* Simplify a condition by use an already calculated value
for `MaxPeelCount`
* Remove a duplicate log entry
* Report basic values for loop costs
Differential Revision: https://reviews.llvm.org/D124388
Since the size of most of SCC's is 1, the PriorityInlineOrder would not change the inline
order in SCC inliner.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D123608
At the moment, unfeasible default destinations are not handled properly
in removeNonFeasibleEdges. So far, only unfeasible cases are removed,
but later code expects unreachable blocks to have no predecessors.
This is causing the crash reported in PR49573.
If the default destination is unfeasible it won't be executed. Create
a new unreachable block on demand and use that as default
destination.
Note that at the moment this only is relevant for cases where
resolvedUndefsIn marks the first case as executable. Regular switch
handling has a FIXME/TODO to support determining whether the default
case is feasible or not.
Fixes#48917.
Differential Revision: https://reviews.llvm.org/D113497
Don't check whether an input of BDV can be pruned if the input
is the BDV itself. BDV is present in the states map, so in case
the input is the BDV itself, we'd return false. So explicitly check this case.
Differential Revision: https://reviews.llvm.org/D123846
We may be able to make the ValueTracking wrapper smarter
in the future (for example, analyze a simple recurrence),
so this will automatically benefit if that happens.
tryToVectorize() method implements one of searching paths for vectorizable tree roots in SLP vectorizer,
specifically for binary and comparison operations. Order of making probes for various scalar pairs
was defined by its implementation: the instruction operands, then climb over one operand if
the instruction is its sole user and then perform same actions for another operand if previous
attempts failed. Problem with this approach is that among these options we can have more than a
single vectorizable tree candidate and it is not necessarily the one that encountered first.
Trying to build vectorizable tree for each possible combination for just evaluation is expensive.
But we already have lookahead heuristics mechanism which we use for finding best pick among
operands of commutative instructions. It calculates cumulative score for candidates in two
consecutive lanes. This patch introduces use of the heuristics for choosing the best pair among
several combinations. We only try one that looks as most promising for vectorization.
Additional benefit is that we reduce total number of vectorization trees built for probes
because we skip those looking non-profitable early.
Reviewed By: Alexey Bataev (ABataev), Vasileios Porpodas (vporpo)
Differential Revision: https://reviews.llvm.org/D124309
This AliasPtr is being created always from an Int64 even for targets
where 32 bit is the proper type. e.g. “thumbv7-none-linux-android16”.
This causes the assert in the `get` func to fail as we're getting a 32
bit from the APInt.
Fix this by simply always just getting the type from the value instead.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D123272
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass...
...,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
AddressSanitizerLegacyPass was removed in D124216.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124337
This fixes a series of mis-compiles by SimpleLoopUnswitch.
My measurements showed no performance regression with -O3 on AArch64
in SPEC2006, SPEC2017 and a set of internal benchmarks.
Fixes#50387, #50430
Depends on D124251.
Reviewed By: nikic, aqjune
Differential Revision: https://reviews.llvm.org/D124252
Logic in this pass assumes that all users of loop instructions are
either in the same loop or are LCSSA Phis. In fact, there can also
be users in unreachable blocks that currently break assertions.
Such users don't need to go to the next round of simplifications.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D124368
This patch add a function foldSelectWithFCmpToFabs, and do more combine for
fneg-of-fabs.
With 'nsz':
fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(x)
fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to -fabs(x)
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D123830
Minor refactoring to reduce size of functional change D124309:
look-ahead scoring routines pulled out of VLOperands and formed
new LookAheadHeuristics helper class.
Reviewed By: Alexey Bataev (ABataev), Vasileios Porpodas (vporpo)
Differential Revision: https://reviews.llvm.org/D124313
MisExpect diagnostics should not prevent compilation from succeeding, and the
assertion is insufficient to prevent division by zero in release builds.
This patch addresses that by replacing the assert with an early return.
Additionally, it disables MisExpect diagnostics when using sample profiling,
since this is the only known case where this error has manifested.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D124302
We only need to insert a Freeze instruction if any of the conditions
may be poison. Similar checks are already done in the other places
SimpleLoopUnswitch creates Freeze instruction.
Reviewed By: aeubanks, efriedma
Differential Revision: https://reviews.llvm.org/D124259
Folds are supposed to always be added in conjugated pairs for and
and or. Merge the two functions to make folds for which this is
currently not the case more obvious.
1d90e53044 switch this code to store
the predicates and operands in variables, but retained a
swapOperands() call here. Thus the commuted cases were no longer
folded. Additionally, as the change was not reported, the next
InstCombine iteration would not pick it up either.
Reapplying without changes, after a fix to a dependent patch.
-----
Rather than creating a PHI node and then using the PHI threading
code, directly handle this case in
FoldCondBranchOnValueKnownInPredecessor().
This change is supposed to be NFC-ish, but may cause changes due
to different transform order.
Reapply with SmallMapVector instead of SmallDenseMap, which should
address the non-determinism issue.
-----
This general threading transform can be performed whenever we know
a constant value for the condition in a predecessor, which would
currently just be the case of a phi node with constant arguments.
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
This emits an `st_size` that represents the actual useable size of an object before the redzone is added.
Reviewed By: vitalybuka, MaskRay, hctim
Differential Revision: https://reviews.llvm.org/D123010
The first attempt at this missed a check to make sure the offset
constant was in range and caused many bot failures.
That was missed in the Alive2 proof because on overshift creates
poison rather than the assert from APInt. Here's an alternate
attempt at a proof using count-trailing-zeros:
https://alive2.llvm.org/ce/z/pnXQYR
Original commit message:
This is similar to an existing pre-shift-of-constant fold:
8a9c70fc01
...but in this case, we need no-wrap on the shl and a negative
offset:
https://alive2.llvm.org/ce/z/_RVz99
This reverts commit 3df86e799e.
This reverts commit 8988254667.
`[SimplifyCFG] Handle branch on same condition in pred more directly`
caused non-determinism when compiling opt with a bootstrapped clang.
I have to revert the dependent commit as well.
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove GCOVProfilerLegacyPass.
I have checked many LLVM users and only llvm-hs[1] uses the legacy gcov pass.
[1]: https://github.com/llvm-hs/llvm-hs/issues/392
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123829
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove MemorySanitizerLegacyPass.
Differential Revision: https://reviews.llvm.org/D123894
Debugify in OriginalDebugInfo mode, does (DebugInfo) collect-before-pass & check-after-pass
for each instruction, which is pretty expensive. When used to analyze DebugInfo losses
in large projects (like LLVM), this raises the build time unacceptably.
This patch introduces a limit for the number of processed functions per compile unit.
By default, the limit is set to UINT_MAX (practically unlimited), and by using the introduced
option -debugify-func-limit the limit could be set to any positive integer number.
Differential revision: https://reviews.llvm.org/D115714
Rather than creating a PHI node and then using the PHI threading
code, directly handle this case in
FoldCondBranchOnValueKnownInPredecessor().
This change is supposed to be NFC-ish, but may cause changes due
to different transform order.
This general threading transform can be performed whenever we know
a constant value for the condition in a predecessor, which would
currently just be the case of a phi node with constant arguments.
The legacy passes are deprecated now and would be removed in near
future. This patch tries to remove legacy passes in coroutines.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D123918
This patch extends the scope of VPlan to also include the exit (aka
middle) block.
For now, the exit block remains empty, but handling of exit values will
subsequently be moved to VPlan, by adding recipes to model exit values
in the exit block.
As a first step, this will allow fixing #51366.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123457
We're making a recursive call here and everything in the function
assumes we're looking at scalars. This would be violated if we
looked through a bitcast from vectors.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D124015
This is not expected to have a functional difference as discussed in the
post-commit comments for 8a9c70fc01. All of the motivating tests for
the older fold still optimize as expected because other code can infer
the 'nuw'.
BlockIsSimpleEnoughToThreadThrough() already checks that the phi
(and all other instructions) are not used outside the block, so
this one-use check is not necessary for legality. I also don't
see any reason why it would be necessary for profitability (in
fact, those extra uses will be replaced with constants, which
should be generally profitable).
test/Transforms/InstCombine/pr39177.ll failed in a -DLLVM_USE_SANITIZER=Undefined build.
```
lib/Transforms/Utils/BuildLibCalls.cpp:1217:17: runtime error: reference binding to null pointer of type 'llvm::Function'
```
`Function &F = *M->getFunction(Name);`
This reverts commit 0f8c626723.
The patch adds SPIRV-specific MC layer implementation, SPIRV object
file support and SPIRVInstPrinter.
Differential Revision: https://reviews.llvm.org/D116462
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
A new set of overloaded functions named getOrInsertLibFunc() are now supposed
to be used instead of getOrInsertFunction() when building a libcall from
within an LLVM optimizer(). The idea is that this new function also makes
sure that any mandatory argument attributes are added to the function
prototype (after calling getOrInsertFunction()).
inferLibFuncAttributes() is renamed to inferNonMandatoryLibFuncAttrs() as it
only adds attributes that are not necessary for correctness but merely
helping with later optimizations.
Generally, the front end is responsible for building a correct function
prototype with the needed argument attributes. If the middle end however is
the one creating the call, e.g. when replacing one libcall with another, it
then must take this responsibility.
This continues the work of properly handling argument extension if required
by the target ABI when building a lib call. getOrInsertLibFunc() now does
this for all libcalls currently built by any LLVM optimizer. It is expected
that when in the future a new optimization builds a new libcall with an
integer argument it is to be added to getOrInsertLibFunc() with the proper
handling. Note that not all targets have it in their ABI to sign/zero extend
integer arguments to the full register width, but this will be done
selectively as determined by getExtAttrForI32Param().
Review: Eli Friedman, Nikita Popov, Dávid Bolvanský
Differential Revision: https://reviews.llvm.org/D123198
With 'nuw' we can convert the increment of the shift amount
into a pre-shift (constant fold) of the shifted constant:
https://alive2.llvm.org/ce/z/FkTyR2
Fixes issue #41976
This patch moves SCEV expansion of steps used by
VPWidenIntOrFpInductionRecipes to the pre-header using
VPExpandSCEVRecipe. This ensures that those steps are expanded while the
CFG is in a valid state. Previously, SCEV expansion may happen during
vector body code-generation, during which the CFG may be invalid,
causing issues with SCEV expansion.
Depends on D122095.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122096
This change could reduce the time we call `declaresCoroEarlyIntrinsics`.
And it is helpful for future changes.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D123925
This reverts commit af0285122f.
The test "libomp::loop_dispatch.c" on builder
openmp-gcc-x86_64-linux-debian fails from time-to-time.
See #54969. This patch is unrelated.
The description was ambiguous about the behavior
when boths select arms are constant or both arms
are not constant. I don't think there's any
evidence to support either way, but this matches
the code with a more specified description.
We can extend this to deal with vector constants
with undef/poison elements. Currently, those don't
get folded anywhere.
The OMPScheduleType enum stores the constants from libomp's internal sched_type in kmp.h and are used by several kmp API functions. The enum values have an internal structure, namely each scheduling algorithm (e.g.) exists in four variants: unordered, orderend, normerge unordered, and nomerge ordered.
This patch (basically a followup to D114940) splits the "ordered" and "nomerge" bits into separate flags, as was already done for the "monotonic" and "nonmonotonic", so we can apply bit flags operations on them. It also now contains all possible combinations according to kmp's sched_type. Deriving of the OMPScheduleType enum from clause parameters has been moved form MLIR's OpenMPToLLVMIRTranslation.cpp to OpenMPIRBuilder to make available for clang as well. Since the primary purpose of the flag is the binary interface to libomp, it has been made more private to LLVMFrontend. The primary interface for generating worksharing-loop using OpenMPIRBuilder code becomes `applyWorkshareLoop` which derives the OMPScheduleType automatically and calls the appropriate emitter function.
While this is mostly a NFC refactor, it still applies the following functional changes:
* The logic from OpenMPToLLVMIRTranslation to derive the OMPScheduleType also applies to clang. Most notably, it now applies the nonmonotonic flag for non-static schedules by default.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was previously not applied if the simd modifier was used. I assume this was a bug, since the effect was due to `loop.schedule_modifier()` returning `mlir::omp::ScheduleModifier::none` instead of `llvm::Optional::None`.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was set even if ordered was specified, in breach to what the comment before citing the OpenMP specification says. I assume this was an oversight.
The ordered flag with parameter was not considered in this patch. Changes will need to be made (e.g. adding/modifying function parameters) when support for it is added. The lengthy names of the enum values can be discussed, for the moment this is avoiding reusing previously existing enum value names such as `StaticChunked` to avoid confusion.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D123403
Until now we would only accept a broadcast load pattern if it is only used
by a single vector of instructions.
This patch relaxes this, and allows for the broadcast to have more than one
user vector, as long as all of its uses are internal to the SLP graph and
vectorized.
Differential Revision: https://reviews.llvm.org/D121940
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove the (Thin)LTO pipelines.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D123882
This patch renames the mergefunc-sanity to mergefunc-verify and renames the related functions to use more
inclusive language
Reviewed By: cebowleratibm
Differential Revision: https://reviews.llvm.org/D114374
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs. We make an exception for are call site of the SCC as
they are helpful providing information for the SCC.
Minor modifications to pointer privatization allow us to perform it even
in the CGSCC pass, similar to ArgumentPromotion.
Issue: https://github.com/llvm/llvm-project/issues/54430
For incoming values of phi nodes added to an outlined function to accommodate different exit paths in the function, when a value is a constant that is passed into the outlined function as an argument, we find the corresponding value in the first extracted function used to fill the overall outlined function. When this value is an argument, the corresponding value used will be the old value, prior to outlining. This patch maintains a mapping from these values to arguments, and uses this mapping to update the added phi node accordingly.
Reviewers: paquette
Recommit of d6eb480afb
Differential Revision: https://reviews.llvm.org/D122206
The previous patch introduced the offloading binary format so we can
store some metada along with the binary image. This patch introduces
using this inside the linker wrapper and Clang instead of the previous
method that embedded the metadata in the section name.
Differential Revision: https://reviews.llvm.org/D122683
Instead of lengthy constructors we can now set the members of a
read-only struct before the Attributor is created. Should make it
clearer what is configurable and also help introducing new options in
the future. This actually added IsModulePass and avoids deduction
through the Function set size. No functional change was intended.
With opaque pointers, the stored value and address can be the same.
Previously the code in VPWidenMemoryInstructionRecipe::onlyFirstLaneDemanded
incorrectly considers stores with matching store and pointer operands as
only demanding the first lane, causing a crash.
Legacy PM for optimization pipeline was deprecated in 13.0.0 and Clang dropped
legacy PM support in D123609. This change removes legacy PM passes for PGO so
that downstream projects won't be able to use it. It seems appropriate to start
removing such "add-on" features like instrumentations, before we remove more
stuff after 15.x is branched.
I have checked many LLVM users and only ldc[1] uses the legacy PGO pass.
[1]: https://github.com/ldc-developers/ldc/issues/3961
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D123834
This can cause crashes by accidentally optimizing out checks for
extern_weak_func != nullptr, when replaced with a known-not-null wrapper.
This solution isn't perfect (only avoids replacement on specific patterns)
but should address common cases.
Internal reference: b/185245029
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D123701
Issue: https://github.com/llvm/llvm-project/issues/54430
For incoming values of phi nodes added to an outlined function to accommodate different exit paths in the function, when a value is a constant that is passed into the outlined function as an argument, we find the corresponding value in the first extracted function used to fill the overall outlined function. When this value is an argument, the corresponding value used will be the old value, prior to outlining. This patch maintains a mapping from these values to arguments, and uses this mapping to update the added phi node accordingly.
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D122206
Issue: https://github.com/llvm/llvm-project/issues/54431
PHINodes that need to be generated to accommodate a PHINode outside the region due to different output paths need to have their own numbering to determine the number of output schemes required to properly handle all the outlined regions. This numbering was previously only determined by the order and values of the incoming values, as well as the parent block of the PHINode. This adds the incoming blocks to the calculation of a hash value for these PHINodes as well, and the supporting infrastructure to give each block in a region a corresponding canonical numbering.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D122207
This addresses an existing TODO by keeping a mapping of external IR
Value * definitions wrapped in VPValues for use in a VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123700
The NewDefault was used to simplify the updating of PHI nodes, but it
causes some inefficiency for target that will run structurizer later. For
example, for a simple two-case switch, the extra NewDefault is causing
unstructured CFG like:
O
/ \
O O
/ \ / \
C1 ND C2
\ | /
\ | /
D
The change is to avoid the ND(NewDefault) block, that is we will get a
structured CFG for above example like:
O
/ \
/ \
O O
/ \ / \
C1 \ / C2
\-> D <-/
The IR change introduced by this patch should be trivial to other targets,
so I am doing this unconditionally.
Fall-through among the cases will also cause unstructured CFG, but it need
more work and will be addressed in a separate change.
Reviewed by: arsenm
Differential Revision: https://reviews.llvm.org/D123607
This reverts commit e810d55809.
The commit was not taken into account the fact that strduped string could be
modified. Checking if such modification happens would make the function very
costly, without a test case in mind it's not worth the effort.
Updated LowerGuardIntrinsic and LowerWidenableCondition to check for
users of the respective intrinsic, instead of checking for guards and
widenable conditions by traversing the entire function.
This is an NFC. Should save some compile time.
This reverts the revert commit 1ddc719680.
This version of the patch sets the initial available value to poison,
which resolves an issue with the SSAUpdater breaking LCSSA form.
C11 specifies memchr() as follows:
> The memchr function locates the first occurrence of c (converted
> to an unsigned char) in the initial n characters (each interpreted
> as unsigned char) of the object pointed to by s. The implementation
> shall behave as if it reads the characters sequentially and stops
> as soon as a matching character is found.
In particular, it is well-defined to specify a memchr size larger
than the underlying object, as long as the character is found before
the end of the object.
Differential Revision: https://reviews.llvm.org/D123665
This should be "NFC" as written, but it will make D122485 smaller
and give us more flexibility to experiment with optimization level
vs. compile-time.
Differential Revision: https://reviews.llvm.org/D123625
Currently SLP vectorizer walks through the instructions and selects
3 main classes of values: 1) reduction operations - instructions with same
reduction opcode (add, mul, min/max, etc.), which build the reduction,
2) reduced values - instructions with the same opcodes, but different
from the reduction opcode, 3) extra arguments - all other values,
instructions from the different basic block rather than the root node,
instructions with to many/less uses.
This scheme is not very efficient. It excludes some instructions and all
non-instruction values from the reductions (constants, proficient
gathers), to many possibly reduced values are marked as extra arguments.
Patch improves this process by introducing a bit extended analysis
stage. During this stage, we still try to select 3 classes of the
values: 1) reduction operations - same as before, 2) possibly reduced
values - all instructions from the current block/non-instructions, which
may build a vectorization tree, 3) extra arguments - instructions from
the different basic blocks. Additionally, an extra sorting of the
possibly reduced values occurs to build the scalar sequences which
highly likely will bed vectorized, e.g. loads are grouped by the
distance between them, constants are grouped together, cmp instructions
are sorted by their compare types and predicates, extractelement
instructions are sorted by the vector operand, etc. Also, these groups
are reordered by their length so the longest group is the first in the
list of the possibly reduced values.
The vectorization process tries to emit the reductions for all these
groups. These reductions, remaining non-vectorized possible reduced
values and extra arguments are then combined into the final expression
just like it was before.
Differential Revision: https://reviews.llvm.org/D114171
We need to explicitly query the shadow here, because it is lazily
initialized for byval arguments. Without opaque pointers this used to
mostly work out, because there would be a bitcast to `i8*` present, and
that would query, and copy in case of byval, the argument shadow.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D123602
We need to explicitly query the shadow here, because it is lazily
initialized for byval arguments. Without opaque pointers this used to
mostly work out, because there would be a bitcast to `i8*` present, and
that would query, and copy in case of byval, the argument shadow.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D123602
This renames functions for more general usage (and current capitalization style)
before a proposed logic change in D122485.
Differential Revision: https://reviews.llvm.org/D123614
This diff extends foldSelectInstWithICmp to handle the case icmp(X) ? f(X) : C
when f(X) is guaranteed to be equal to C for all X in the exact range of the inverse predicate.
This addresses the issue https://github.com/llvm/llvm-project/issues/54089.
Differential revision: https://reviews.llvm.org/D123159
Test plan: make check-all
The test is already simplified, and I'm not sure how
to write a test to exercise the new clause. But it
protects the 2-bit pattern from miscompiling as noted
in D123453.
https://alive2.llvm.org/ce/z/QPyVfv
(If we managed to fall into the mul transform, it
would wrongly create a zero on this pattern.)
IMO when user provide unroll pragma, compiler should always respect it.
It is not clear to me why loop unroll pass currently ensure that the
unrolled loop size is limited by PragmaUnrollThreshold.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D119148
When only a store is sunk, there is no need to create a load in the
pre-header, as the result of the load will never get used.
The dead load can can introduce UB, if the function is marked as
writeonly.
Fixes#51248.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123473
After D121624 models the pre-header in VPlan, VPExpandSCEVRecipes can be
placed there. This ensures SCEV expansion happens before modifying the
CFG during VPlan execution, when CFG is incomplete.
Depends on D121624.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122095
This patch extends the scope of VPlan to also model the pre-header.
The pre-header can be used to place recipes that should be code-gen'd
outside the loop, like SCEV expansion.
Depends on D121623.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121624
This fixes the code to actually use the location of the instruction, if
available. Previously, SetInsertPoint would overwrite the insert point
set from the instruction.
And thread DSE's ephemeral values to EarliestEscapeInfo.
This allows more precise analysis in DSEState::isReadClobber() via BatchAA.
Followup to D123162.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123342
Loop Strength Reduce sometimes optimizes away all uses of an induction variable
from a loop but leaves the IV increments. When the only remaining use of the IV
is the PHI in the exit block, this patch will call rewriteLoopExitValues to
replace the exit block PHI with the final value of the IV to skip the updates
in each loop iteration.
Differential Revision: https://reviews.llvm.org/D118808
This makes MemorySSA in LoopSink required, and removes the AST-based
implementation, as well as the related support code in LICM.
Differential Revision: https://reviews.llvm.org/D123288
It actually implements support for seeing through loads, using alias analysis to
refine the result.
This is rather limited, but I didn't want to rely on more than available
analysis at that point (to be gentle with compilation time), and it does seem to
catch common scenario, as showcased by the included tests.
Differential Revision: https://reviews.llvm.org/D122431
Currently, the utility supports lowering of non atomic memory transfer routines only. This patch adds support for atomic version of memcopy. This may be useful for targets not supporting atomic memcopy.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D118443
Similar to the problem in 0bb25b4603, bitcasts that are inserted must
dominate all uses. When rewriting "values" with "new values" that have
the updated address space, we may replace the "new value" with a bitcast
if one of the original users is an addresspace cast. This bitcast must
be inserted before ALL users, not only before the addresspace cast.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D122964
By adding a parameter to function FoldOpIntoSelect, we can fold more Ops to Select.
For this example, we tend to fold the division instruction,
so we no longer care whether SelectInst is one use.
This patch slove TODO left in InstCombine/div.ll.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D122967
This is part of being able to get rid of two more columns in
MemoryBuiltins.cpp's large table. We'll have two more changes before
we can finish the job.
Differential Revision: https://reviews.llvm.org/D119582
Sometimes we can infer an align from an allocalign but the function
already promised it'd be more-aligned than the allocalign and there's an
existing align that we shouldn't reduce. Make sure we handle that
correctly.
Differential Revision: https://reviews.llvm.org/D121642
This is a lshr equivalent to D122340 - if we don't demand any of the additional sign bits introduced by the ashr, the lshr can be treated as an ashr and we can remove the shift entirely if we only demand already known sign bits.
Another step towards PR21929
https://alive2.llvm.org/ce/z/6f3kjq
Differential Revision: https://reviews.llvm.org/D123118
LoopSink with the legacy pass manager still uses AST, because we
can't compute MemorySSA conditionally. I think now that the legacy
pass manager will be removed soon(TM) we don't need to care about
compile-time impact here anymore. Additionally, since MemorySSA is
no longer eagerly optimized, the impact is actually not that high
anymore (~0.2% geomean regression on CTMark).
This just makes legacy PM and new PM behavior line up -- as a
followup I'll drop these options entirely and make MemorySSA use
mandatory.
Differential Revision: https://reviews.llvm.org/D123216