Summary:
The MSVC ABI appears to mangle the lexical scope into the names of
statics. Specifically, a counter is incremented whenever a scope is
entered where things can be declared in such a way that an ambiguity can
arise. For example, a class scope inside of a class scope doesn't do
anything interesting because the nested class cannot collide with
another nested class.
There are problems with this scheme:
- It is unreliable. The counter is only incremented when a previously
never encountered scope is entered. There are cases where this will
cause ambiguity amongst declarations that have the same name where one
was introduced in a deep scope while the other was introduced right
after in the previous lexical scope.
- It is wasteful. Statements like: {{{{{{{ static int foo = a; }}}}}}}
will make the mangling of "foo" larger than it need be because the
scope counter has been incremented many times.
Because of these problems, and practical implementation concerns. We
choose not to implement this scheme if the local static or local type
isn't visible. The mangling of these declarations will look very
similar but the numbering will make far more sense, this scheme is
lifted from the Itanium ABI implementation.
Reviewers: rsmith, doug.gregor, rnk, eli.friedman, cdavis5x
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2953
llvm-svn: 202951
We were previously checking at every destructor declaration, but that was a bit
excessive. Since the deleting destructor is emitted with the vtable, do the
check when the vtable is marked used.
Differential Revision: http://llvm-reviews.chandlerc.com/D2851
llvm-svn: 202046
The language forbids defining enums in prototypes, so this check is normally
redundant, but if an enum is defined during template instantiation it should
not be added to the prototype scope.
While at it, clean up the code that deals with tag definitions in prototype
scope and expand the visibility warning to cover the case where an anonymous
enum is defined.
Differential Revision: http://llvm-reviews.chandlerc.com/D2742
llvm-svn: 201927
DR18 previously forebode typedefs to be used as parameter types if they
were of type 'void'. DR577 allows 'void' to be used as a function
parameter type regardless from where it came.
llvm-svn: 201631
and the class name is shadowed by another member. Recovery still needs
to be figured out, which is non-trivial since the parser has already gone
down a much different path than if it had recognized the class template
as type instead of seeing the member that shadowed the class template.
llvm-svn: 201360
Introduce a notion of a 'current representation method' for
pointers-to-members.
When starting out, this is set to 'best case' (representation method is
chosen by examining the class, selecting the smallest representation
that would work given the class definition or lack thereof).
This pragma allows the translation unit to dictate exactly what
representation to use, similar to how the inheritance model keywords
operate.
N.B. PCH support is forthcoming.
Differential Revision: http://llvm-reviews.chandlerc.com/D2723
llvm-svn: 201105
If we are in the middle of defining the class, don't attempt to
validate previously annotated declarations. We may not have seen base
specifiers or virtual method declarations yet.
llvm-svn: 200959
using-declaration, and they declare the same function (either because
the using-declaration is in the same namespace as the declaration it
imports, or because they're both extern "C"), they do not conflict.
llvm-svn: 200897
redeclaration, not just when looking them up for a use -- we need the implicit
declaration to appropriately check various properties of them (notably, whether
they're deleted).
llvm-svn: 200729
a previously-computed linkage as an unsupportable error condition.
Per discussion on cfe-commits, this appears to be a
difficult-to-resolve flaw in our implementation approach;
we may pursue this as a language defect, but for now it's
better to diagnose it as unsupported than to produce
inconsistent results (or assertions). Anything that we can
do to limit how often this diagnostic fires, such as the
changes in r200380, is probably for the best, though.
llvm-svn: 200438
We would previously allow inappropriate inheritance keywords to appear
on class declarations. We would also allow inheritance keywords on
templates which were not fully specialized; this was divergent from
MSVC.
Differential Revision: http://llvm-reviews.chandlerc.com/D2585
llvm-svn: 200423
the linkage cache) when type-checking static local
variables.
There's a very deep problem here where the linkage of
a declaration can suddenly massively change as soon as
it's given a typedef name; these fixes, while optimizations
in their own right, are really just targeted workarounds.
rdar://15928125
llvm-svn: 200380
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Lift the getFunctionDecl() utility out of the parser into a general
Decl::getAsFunction() and use it to simplify other parts of the implementation.
Reduce isFunctionOrFunctionTemplate() to a simple type check that works the
same was as the other is* functions and move unwrapping of shadowed decls to
callers so it doesn't get run twice.
Shuffle around canSkipFunctionBody() to reduce virtual dispatch on ASTConsumer.
There's no need to query when we already know the body can't be skipped.
llvm-svn: 199794
the program, in C++. (We allow the latter as an extension, since we've always
permitted it, and GCC does the same, and our supported C++ ABIs don't do
anything special in main.)
llvm-svn: 199782
Checking in ActOnVariableDeclarator computes and caches the linkage using
the non-deduced auto type which defaults to external linkage. Depending on
how the auto type is deduced linkage can change and conflict with the
cached linkage, hitting asserts.
llvm-svn: 199774
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
Additionally, remove the optional nature of the spelling list index when creating attributes. This is supported by table generating a Spelling enumeration when the spellings for an attribute are distinct enough to warrant it.
llvm-svn: 199378
There's been long-standing confusion over the role of these two options. This
commit makes the necessary changes to differentiate them clearly, following up
from r198936.
MicrosoftExt (aka. fms-extensions):
Enable largely unobjectionable Microsoft language extensions to ease
portability. This mode, also supported by gcc, is used for building software
like FreeBSD and Linux kernel extensions that share code with Windows drivers.
MSVCCompat (aka. -fms-compatibility, formerly MicrosoftMode):
Turn on a special mode supporting 'heinous' extensions for drop-in
compatibility with the Microsoft Visual C++ product. Standards-compilant C and
C++ code isn't guaranteed to work in this mode. Implies MicrosoftExt.
Note that full -fms-compatibility mode is currently enabled by default on the
Windows target, which may need tuning to serve as a reasonable default.
See cfe-commits for the full discourse, thread 'r198497 - Move MS predefined
type_info out of InitializePredefinedMacros'
No change in behaviour.
llvm-svn: 199209
rules: instead of requiring flexible array members to be POD, require them to
be trivially-destructible. This seems to be the only constraint that actually
matters here (and even then, it's questionable whether this matters).
llvm-svn: 198983
Fixes <rdar://problem/15596883>
In ARC, __attribute__((objc_precise_lifetime)) guarantees that the
object stored in it will survive to the end of the variable's formal
lifetime. It is therefore useful even if it completely unused.
llvm-svn: 198888
type-specifier in C++. Some checks will assert in this case otherwise (in
particular, the access specifier may be missing if this happens inside a class
definition, due to a violation of an AST invariant).
llvm-svn: 198721
enum-scoped.cpp:93:6: error: enumeration redeclared with different underlying type 'short' (was 'int')
enum Redeclare6 : short;
^
enum-scoped.cpp:92:6: note: previous declaration is here
enum Redeclare6 : int;
^ ~~~
The redeclaration source range is still missing but this is a step forward,
potentially edging towards a FixIt.
llvm-svn: 198601
In all three checks, the note indicates a previous declaration and never a 'use'.
Before:
enum-scoped.cpp:92:6: note: previous use is here
enum Redeclare6 : int;
^
After:
enum-scoped.cpp:92:6: note: previous declaration is here
enum Redeclare6 : int;
^
llvm-svn: 198600
- Remove the additions to ObjCMethodDecl & ObjCIVarDecl that were getting de/serialized and consolidate
all functionality for the checking for this warning in Sema::DiagnoseUnusedBackingIvarInAccessor
- Don't check immediately after the method body is finished, check when the @implementation is finished.
This is so we can see if the ivar was referenced by any other method, even if the method was defined after the accessor.
- Don't silence the warning if any method is called from the accessor silence it if the accessor delegates to another method via self.
rdar://15727325
llvm-svn: 198432
Without this patch, record decls with invalid out-of-line method delcs would
sometimes be marked invalid, but not always. With this patch, they are
consistently never marked invalid.
(The code to do this was added in
http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20100809/033154.html
, but the test from that revision is still passing.)
As far as I can tell, this was the only place where a class was marked invalid
after its definition was complete.
llvm-svn: 197848
We would previously emit redundant diagnostics for the following code:
struct S {
virtual ~S() = delete;
void operator delete(void*, int);
void operator delete(void*, double);
} s;
First we would check on ~S() and error about the ambigous delete functions,
and then we would error about using the deleted destructor.
If the destructor is deleted, there's no need to check it.
Also, move the check from Sema::ActOnFields to CheckCompleteCXXClass. These
are run at almost the same time, called from ActOnFinishCXXMemberSpecification.
However, CHeckCompleteCXXClass may mark a defaulted destructor as deleted, and
if that's the case we don't want to check it.
Differential Revision: http://llvm-reviews.chandlerc.com/D2421
llvm-svn: 197509
This reverts commit 2b43f500cfea10a8c59c986dcfc24fd08eecc77d.
This was accidentally committed because I failed to notice my client
wasn't clean prior to submitting a fix for a crasher.
llvm-svn: 197410
The check for bitfields that are longer than their base type needed to
be checked in microsoft mode (cl.exe does not support the C++ extnetion
for bitfields longer than their type).
llvm-svn: 197186
more than one such initializer in a union, make mem-initializers override
default initializers for other union members, handle anonymous unions with
anonymous struct members better. Fix a couple of semi-related bugs exposed by
the tests for same.
llvm-svn: 196892
within their namespace, and such a redeclaration isn't required to be a
definition any more.
Update DR status page to say Clang 3.4 instead of SVN and add new Clang 3.5
category (but keep Clang 3.4 yellow for now).
llvm-svn: 196481
Clang currently croaks on the following:
struct X1 {
struct X2 {
int L = ([] (int i) { return i; })(2);
};
};
asserting that the containing lexical context of the lambda is not Sema's cur context, when pushing the lambda's decl context on.
This occurs because (prior to this patch) getContainingDC always returns the non-nested class for functions at class scope (even for inline member functions of nested classes (to account for delayed parsing of their bodies)). The patch addresses this by having getContainingDC always return the lexical DC for a lambda's call operator.
Link to the bug: http://llvm.org/bugs/show_bug.cgi?id=18052
Link to Richard Smith's feedback on phabricator: http://llvm-reviews.chandlerc.com/D2331
Thanks!
llvm-svn: 196423
super another initializer and when the implementation does not delegate to
another initializer via a call on 'self'.
A secondary initializer is an initializer method not marked as a designated
initializer within a class that has at least one initializer marked as a
designated initializer.
llvm-svn: 196318
data member definitions when the variable has an initializer
in its declaration.
For the following code:
struct S {
static const int x = 42;
};
const int S::x = 42;
This patch changes the diagnostic from:
a.cc:4:14: error: redefinition of 'x'
const int S::x = 42;
^
a.cc:2:20: note: previous definition is here
static const int x = 42;
^
to:
a.cc:4:18: error: static data member 'x' already has an initializer
const int S::x = 42;
^
a.cc:2:24: note: previous initialization is here
static const int x = 42;
^
Differential Revision: http://llvm-reviews.chandlerc.com/D2235
llvm-svn: 195306
- If a deprecated class refers to another deprecated class, do not warn.
- @implementations of a deprecated class can refer to other deprecated things.
Fixes <rdar://problem/15407366> and <rdar://problem/15466783>.
llvm-svn: 195259
representing the module import rather than making the module immediately
visible. This serves two goals:
* It avoids making declarations in the module visible prematurely, if we
walk past the #include during a tentative parse, for instance, and
* It gives a diagnostic (although, admittedly, not a very nice one) if
a header with a corresponding module is included anywhere other than
at the top level.
llvm-svn: 194782
Also refine test case to capture the intention of this suppression. Essentially
some developers use __bridge_transfer as if it were a safe CFRelease.
llvm-svn: 194663
bit fields of zero size. Warnings are generated in C++ mode and if
only such type is defined inside extern "C" block.
The patch fixed PR5065.
Differential Revision: http://llvm-reviews.chandlerc.com/D2151
llvm-svn: 194653
No Functionality change.
This refactoring avoids having to call getCurLambda right after PushLambdaScope, to obtain the LambdaScopeInfo that was created during the call to PushLambdaScope.
llvm-svn: 194438
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
Flexible array members only work out if they are the last field of a
record, however virtual bases would give us many situations where the
flexible array member would overlap with the virtual base fields.
It is unlikely in the extreme that this behavior was intended by the
user so raise a diagnostic instead of accepting. This is will not
reject conforming code because flexible array members are an extension
in C++ mode.
llvm-svn: 193920
The determination of which diagnostics would be issued for certain
anonymous unions started to get a little ridiculous. Clean this up by
inverting the condition-tree's logic from dialect -> issue to
issue -> diagnostic.
As part of this cleanup, move ext_c99_flexible_array_member from
DiagnosticParseKinds.td to DiagnosticSemaKinds.td because it's driven by
Sema, not Parse.
Also, the liberty was taken to edit ext_c99_flexible_array_member to
match other, similar, diagnostics.
llvm-svn: 193919
Differential Revision: http://llvm-reviews.chandlerc.com/D2082
Adds a lang_c LinkageSpecDecl to lazily generated builtins. This enforces correct
behavior for builtins in a variety of cases without special treatment elsewhere within
the compiler (special treatment is removed by the patch). It also allows for C++
overloads of builtin functions, which Microsoft uses in their headers e.g.
_InterlockedExchangeAdd is an extern C builtin for the long type but an inline wrapper
for int type.
llvm-svn: 193896
A prior commit of this patch was reverted because it was within the blamelist's purview of a failing test. The failure of that test has been addressed here: http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20131021/091546.html. Therefore I am recommitting this patch (all tests pass on windows, except for the usual modules & index suspects that never pass on my box).
Some background: Both Doug and Richard had asked me in Chicago to remove the circular reference in CXXRecordDecl to LambdaExpr by factoring out and storing the needed information from LambdaExpr directly into CXXRecordDecl.
In addition, I have added an IsGenericLambda flag - this makes life a little easier when we implement capturing, and are Sema-analyzing the body of a lambda (and the calloperator hasn't been wired to the closure class yet). Any inner lambdas can have potential captures that could require walking up the scope chain and checking if any generic lambdas are capture-ready. This 'bit' makes some of that checking easier.
No change in functionality.
This patch was approved by Doug with minor modifications (comments were cleaned up, and all data members were converted from bool/enum to unsigned, as requested):
http://llvm-reviews.chandlerc.com/D1856
Thanks!
llvm-svn: 193246
They were causing CodeGenCXX/mangle-exprs.cpp to fail.
Revert "Remove the circular reference to LambdaExpr in CXXRecordDecl."
Revert "Again: Teach TreeTransform and family how to transform generic lambdas nested within templates and themselves."
llvm-svn: 193226
Both Doug and Richard had asked me to remove the circular reference in CXXRecordDecl to LambdaExpr by factoring out and storing the needed information from LambdaExpr directly into CXXRecordDecl.
No change in functionality.
In addition, I have added an IsGenericLambda flag - this makes life a little easier when we implement capturing, and are Sema-analyzing the body of a lambda (and the calloperator hasn't been wired to the closure class yet). Any inner lambdas can have potential captures that could require walking up the scope chain and checking if any generic lambdas are capture-ready. This 'bit' makes some of that checking easier.
This patch was approved by Doug with minor modifications (comments were cleaned up, and all data members were converted from bool/enum to unsigned, as requested):
http://llvm-reviews.chandlerc.com/D1856
Thanks!
llvm-svn: 193223
With this extension, friend function declarations will retain the language
linkage specified for previous declarations instead of emitting an error
diagnostic.
The feature is known to be compatible with GCC and MSVC and permits a
language to be specified indirectly where it cannot otherwise be written
directly in class scope.
Work is ongoing to improve linkage spec diagnostics.
Fixes PR17337.
Reviewed by Richard Smith.
llvm-svn: 193206
This fixes pr17624.
A FIXME from Richard Smith:
It seems to me that the root cause is that a per-Decl 'used' flag doesn't
really make much sense in the way we use it now. I think we should either track
whether that particular declaration is used (with isUsed scanning the entire
redecl chain), or we should only have one flag for the entire redeclaration
chain (perhaps by always looking at the flag on either the most recent decl or
the canonical decl). Modeling it as "is this declaration or any previous
declaration used" is weird, and requires contortions like the loop at the end
of Sema::MarkFunctionReferenced.
llvm-svn: 193202
This fixes pr17639.
Before this patch clang would consider
void foo(void) __attribute((alias("__foo")));
a declaration. It now correctly handles it as a definition.
Initial patch by Alp Toker. I added support for variables.
llvm-svn: 193200
This fixes PR17591.
N.B. This actually goes beyond what the standard mandates by requiring
the restriction to hold for declarations instead of definitions. This
is believed to be a defect in the standard and an LWG issue has been
submitted.
llvm-svn: 193044
* NamedDecl and CXXMethodDecl were missing getMostRecentDecl.
* The const version can just forward to the non const.
* getMostRecentDecl can use cast instead of cast_or_null.
This then removes some casts from the callers.
llvm-svn: 193039
Summary: Some MS headers use these features.
Reviewers: rnk, rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1948
llvm-svn: 192936
MSVC and clang with -fms-extensions allow pure virtual methods to be
defined inline after the "= 0" tokens. Clang warns on these because it
is not standard, but incorrectly warns on out-of-line definitions, which
are standard.
With this change, clang will only warn on inline definitions of pure
virtual methods.
Fixes some self-host warnings on out-of-line definitions of pure virtual
destructors.
llvm-svn: 192244
Summary:
Operator new, new[], delete, and delete[] are all implicitly static when
declared inside a record. CXXMethodDecl already knows this, but we need
to account for that before we pick the calling convention for the
function type.
Fixes PR17371.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1761
llvm-svn: 192150
In r186373, we started merging attributes on typedefs, but this causes
us to try to merge attributes even if the previous declaration was not
a typedef.
Only merge the attributes if the previous decl was also a typedef.
Fixes rdar://problem/15044218
llvm-svn: 192146
As Richard pointed out to me, dyn_cast is very cheap - there is no real benefit from adding cluttery overloads to only avoid that cast.
No functionality change.
llvm-svn: 191646
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
Summary:
Parsing cast expressions during error recovery can put us in a bad
state. Check to see if the token for a simple-type-specifier makes
sense before further parsing.
Fixes PR17255.
Reviewers: rsmith, doug.gregor, CornedBee, eli.friedman
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1696
llvm-svn: 191159
variable from being the function to being the enclosing namespace scope (in
C++) or the TU (in C). This allows us to fix a selection of related issues
where we would build incorrect redeclaration chains for such declarations, and
fail to notice type mismatches.
Such declarations are put into a new IdentifierNamespace, IDNS_LocalExtern,
which is only found when searching scopes, and not found when searching
DeclContexts. Such a declaration is only made visible in its DeclContext if
there are no non-LocalExtern declarations.
llvm-svn: 191064
Summary:
When selecting a mangling for an anonymous tag type:
- We should first try it's typedef'd name.
- If that doesn't work, we should mangle in the name of the declarator
that specified it as a declaration specifier.
- If that doesn't work, fall back to a static mangling of
<unnamed-type>.
This should make our anonymous type mangling compatible.
This partially fixes PR16994; we would need to have an implementation of
scope numbering to get it right (a separate issue).
Reviewers: rnk, rsmith, rjmccall, cdavis5x
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1540
llvm-svn: 190892
Summary:
This fixes several issues with the original implementation:
- Win32 entry points cannot be in namespaces
- A Win32 entry point cannot be a function template, diagnose if we it.
- Win32 entry points cannot be overloaded.
- Win32 entry points implicitly return, similar to main.
Reviewers: rnk, rsmith, whunt, timurrrr
Reviewed By: rnk
CC: cfe-commits, nrieck
Differential Revision: http://llvm-reviews.chandlerc.com/D1683
llvm-svn: 190818
Make sure we perform the correct "referenced-but-not-used" check for
static member constants.
Fixes bug reported on cfe-commits by Alexey Samsonov.
llvm-svn: 190437
Static locals requiring initialization are not thread safe on Windows.
Unfortunately, it's possible to create static locals that are actually
externally visible with inline functions and templates. As a result, we
have to implement an initialization guard scheme that is compatible with
TUs built by MSVC, which makes thread safety prohibitively difficult.
MSVC's scheme is that every function that requires a guard gets an i32
bitfield. Each static local is assigned a bit that indicates if it has
been initialized, up to 32 bits, at which point a new bitfield is
created. MSVC rejects inline functions with more than 32 static locals,
and the externally visible mangling (?_B) only allows for one guard
variable per function.
On Eli's recommendation, I used MangleNumberingContext to track which
bit each static corresponds to.
Implements PR16888.
Reviewers: rjmccall, eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1416
llvm-svn: 190427
This patch does a few different things.
This patch improves unused var diags for const vars: we no longer
unconditionally suppress diagnostics for const vars, instead only suppressing
the diagnostic when the declaration appears to be useful.
This patch also makes us more consistently use whether a variable/function
is declared in the main file to suppress diagnostics where appropriate.
Fixes <rdar://problem/14907887>.
llvm-svn: 190382
Exception specs are not part of the canonical type, but we shouldn't
drop them just because we merged a noreturn attribute.
Fixes PR17110.
llvm-svn: 190206
When an AST file is built based on another AST file, it can use a decl from
the fist file, and therefore mark the "isUsed" bit. We need to note this in
the AST file so that the bit is set correctly when the second AST file is
loaded.
This patch introduces the distinction between setIsUsed() and markUsed() so
that we don't call into the ASTMutationListener callback when it wouldn't
be appropriate.
Fixes PR16635.
llvm-svn: 190016
Summary:
Makes functions with implicit calling convention compatible with
function types with a matching explicit calling convention. This fixes
things like calls to qsort(), which has an explicit __cdecl attribute on
the comparator in Windows headers.
Clang will now infer the calling convention from the declarator. There
are two cases when the CC must be adjusted during redeclaration:
1. When defining a non-inline static method.
2. When redeclaring a function with an implicit or mismatched
convention.
Fixes PR13457, and allows clang to compile CommandLine.cpp for the
Microsoft C++ ABI.
Excellent test cases provided by Alexander Zinenko!
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1231
llvm-svn: 189412
- Some documenation were added.
- Usages of OpaquePtr<A>.getAsVal<A>() were replaced by OpaquePtr<A>.get().
- Methods getAs and getAsVal were renamed to getPtrTo and getPtrAs respectively.
llvm-svn: 189346
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
referenced as a member of the current instantiation. In that case, deduce the
type of the function to a dependent type rather than exposing an undeduced auto
type to the rest of the current instantiation.
The standard doesn't really say that the type is dependent in this case; I'll
bring this up with CWG.
llvm-svn: 188410
When a local extern declaration redeclares some other entity, the type of that
entity is merged with the prior type if the prior declaration is visible (in C)
or is declared in the same scope (in C++).
- Make LookupRedeclarationWithLinkage actually work in C++, use it in the right
set of cases, and make it track whether it found a shadowed declaration.
- Track whether we found a declaration in the same scope (for C++) including
across serialization and template instantiation.
llvm-svn: 188307
I'm not really satisfied with the ad-hoc nature of
Sema::diagnoseQualifiedDeclaration, but I'm not sure how to fix it.
Fixes <rdar://problem/14639501>.
llvm-svn: 188208
of local classes. We were previously handling this by performing qualified
lookup within a function declaration(!!); replace it with the proper scope
lookup.
llvm-svn: 188050
bool, half, pointers and structs / unions containing any
of these are not allowed. Does not yet reject size_t and
related integer types that are also disallowed.
llvm-svn: 186908
The functionality is equivalent to the GCC attribute. Variables of tagged
types will be warned about as unused if they are not used in any way
except for possible (even non-trivial) ctors/dtors called. Useful for tagging
classes like std::string (which is not part of this commit).
llvm-svn: 186765
r186331).
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186546
cl.exe treats wide bitfields as an error. This patch causes them to be
an error if IsMsStruct is true, as it is in straight C.
Patch by Warren Hunt!
Reviewers: eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1125
llvm-svn: 186536
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
Not completely sure this is right, but it's clearly better than what
we did before this commit (effectively dropping the attribute).
<rdar://problem/14413117>
llvm-svn: 186373
This breaks the build of basic patterns with repeated friend
declarations. See the added test case in SemaCXX/friend.cpp or the test
case reported to the original commit log.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186331
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186199
fix is.
Original commit log:
If we friend a declaration twice, that should not make it visible to
name lookup in the surrounding context. Slightly rework how we handle
friend declarations to inherit the visibility of the prior
declaration, rather than setting a friend declaration to be visible
whenever there was a prior declaration.
llvm-svn: 186185
lookup in the surrounding context. Slightly rework how we handle friend
declarations to inherit the visibility of the prior declaration, rather
than setting a friend declaration to be visible whenever there was a prior
declaration.
llvm-svn: 186040
Compute mangling numbers for externally visible local variables and tags.
Change the mangler to consistently use discriminators where necessary.
Tweak the scheme we use to number decls which are not externally visible
to avoid unnecessary discriminators in common cases now that we request
them more consistently.
Fixes <rdar://problem/14204721>.
llvm-svn: 185986
Sema::MergeFunctionDecl attempts merging two decls even if the old decl
is invalid. This can lead to interesting circumstances where we
successfully merge the decls but the result makes no sense.
Take the following for example:
template <typename T>
int main(void);
int main(void);
Sema will not consider these to be overloads of the same name because
main can't be overloaded, which means that this must be a redeclaration.
In this case the templated decl is compatible with the non-templated
decl allowing the Sema::CheckFunctionDeclaration machinery to move on
and do bizarre things like setting the previous decl of a non-templated
decl to a templated decl!
The way I see it, we should just bail from MergeFunctionDecl if the old
decl is invalid.
This fixes PR16531.
llvm-svn: 185779
This boils down to us sending invalid function decls to
CheckFunctionDeclaration becauswe we did not consider that CheckMain
could cause the decl to be invalid. Instead, interogate the new decl's
main-validity and *then* send it over to get CheckFunctionDeclaration'd
if it was still valid after calling CheckMain.
llvm-svn: 185745
The removal is tried by retrying the failed lookup of a correction
candidate with either the MemberContext or SS (CXXScopeSpecifier) or
both set to NULL if they weren't already. If the candidate identifier
is then looked up successfully, make a note in the candidate that the
SourceRange should include any existing nested name specifier even if
the candidate isn't adding a different one (i.e. the candidate has a
NULL NestedNameSpecifier).
Also tweak the diagnostic messages to differentiate between a suggestion
that just replaces the identifer but leaves the existing nested name
specifier intact and one that replaces the entire qualified identifier,
in cases where the suggested replacement is unqualified.
llvm-svn: 185487
standard's rule that an extern "C" declaration conflicts with any entity in the
global scope with the same name. Now we only care if the global scope entity is
a variable declaration (and so might have the same mangled name as the extern
"C" declaration). This has been reported as a standard defect.
Original commit message:
PR7927, PR16247: Reimplement handling of matching extern "C" declarations
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185281
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185229
r177473 made us correctly consider only those declarations in the
enclosing namespace scope when looking for a friend declaration. Under
ms-extensions mode, where we do some level of friend injection, this
meant that we were introducing a new tag type into a different scope
than what Microsoft actually does. Address this by only doing the
friend injection when we didn't see any tag with that name in any
outer scope. Fixes <rdar://problem/14250378>.
llvm-svn: 185100
Make use of getTypeSizeInChars to detect structs/unions of zero size. It allows
more accurate detection of types of zero size. It however has a side effect -
sequence of used types may change, that is why the test 'override-layout' was
modified.
llvm-svn: 184088
This helps preserve the type-as-written in the AST, which we need for
MSVC mangling. In particular, we need to preserve the types of array
parameters in function pointer types.
The essence of this change is:
- QualType ArgTy = Param->getType();
+ QualType ArgTy = Param->getTypeSourceInfo()->getType();
... followed by the adjustment in ActOnFunctionDeclarator().
Differential Revision: http://llvm-reviews.chandlerc.com/D883
llvm-svn: 183614
references. What's more, they use this language extension in their
ATL header files (which come as part of MFC and the Win32 SDK). This patch implements support for the Microsoft extension, and addresses PR13737.
llvm-svn: 182936
While the C++ standard requires that this lookup take place only at the
definition point of a virtual destructor (C++11 [class.dtor]p12), the
Microsoft ABI may require the compiler to emit a deleting destructor
for any virtual destructor declared in the TU, including ones without
a body, requiring an operator delete() lookup for every virtual
destructor declaration. The result of the lookup should be the same
no matter which declaration is used (except in weird corner cases).
This change will cause us to reject some valid TUs in Microsoft ABI
mode, e.g.:
struct A {
void operator delete(void *);
};
struct B {
void operator delete(void *);
};
struct C : A, B {
virtual ~C();
};
As Richard points out, every virtual function declared in a TU
(including this virtual destructor) is odr-used, so it must be defined
in any program which declares it, or the program is ill formed, no
diagnostic required. Because we know that any definition of this
destructor will cause the lookup to fail, the compiler can choose to
issue a diagnostic here.
Differential Revision: http://llvm-reviews.chandlerc.com/D822
llvm-svn: 182270
selectany only applies to externally visible global variables. It has
the effect of making the data weak_odr.
The MSDN docs suggest that unused definitions can only be dropped at
linktime, so Clang uses weak instead of linkonce. MSVC optimizes away
references to constant selectany data, so it must assume that there is
only one definition, hence weak_odr.
Reviewers: espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D814
llvm-svn: 182266
This patch renames getLinkage to getLinkageInternal. Only code that
needs to handle UniqueExternalLinkage specially should call this.
Linkage, as defined in the c++ standard, is provided by
getFormalLinkage. It maps UniqueExternalLinkage to ExternalLinkage.
Most places in the compiler actually want isExternallyVisible, which
handles UniqueExternalLinkage as internal.
llvm-svn: 181677
I was not able to find a case (other than the fix in r181163) where this
makes a difference, but it is a more obviously correct API to have.
llvm-svn: 181165
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180973
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180970
are now two distinct canonical 'AutoType's: one is the undeduced 'auto'
placeholder type, and the other is a deduced-but-dependent type. All
deduced-to-a-non-dependent-type cases are still non-canonical.
llvm-svn: 180789
Instead, we check for one line extern "C" context in linkage computation and
when deciding if a variable is a definition.
This hopefully completes the transition to having "as written" semantics for
hasExternalStorage.
llvm-svn: 180258
statement in constexpr functions. Everything which doesn't require variable
mutation is also allowed as an extension in C++11. 'void' becomes a literal
type to support constexpr functions which return 'void'.
llvm-svn: 180022
C++1y, so stop adding the 'const' there. Provide a compatibility warning for
code relying on this in C++11, with a fix-it hint. Update our lazily-written
tests to add the const, except for those ones which were testing our
implementation of this rule.
llvm-svn: 179969
It was being used correctly, but it is a very dangerous API to have around.
Instead, move the logic from the filtering to when we are deciding if we should
link two decls.
llvm-svn: 179523
Invalid redeclarations of valid explicit declarations shouldn't
take the same path as redeclarations of implicit declarations,
and invalid local extern declarations shouldn't foul things up
for everybody else.
llvm-svn: 179482
New rule:
- Method decls in @implementation are considered "redeclarations"
and inherit deprecated/availability from the @interface.
- All other cases are consider overrides, which do not inherit
deprecated/availability. For example:
(a) @interface redeclares a method in an adopted protocol.
(b) A subclass redeclares a method in a superclass.
(c) A protocol redeclares a method from another protocol it adopts.
The idea is that API authors should have the ability to easily
move availability/deprecated up and down a class/protocol hierarchy.
A redeclaration means that the availability/deprecation is a blank
slate.
Fixes <rdar://problem/13574571>
llvm-svn: 178937
This removes a bit of patching that survived r178663. Without it we can produce
better a better error message for
const int a = 5;
static const int a;
llvm-svn: 178795
Having these not be the same makes an easy to misuse API. We should audit the
uses and probably rename to something like
foo->hasExternalLinkage():
The c++ standard one. That is UniqueExternalLinkage or ExternalLinkage.
foo->hasUniqueExternalLinkage():
Is UniqueExternalLinkage.
foo->hasCogeGenExternalLinkage():
Is ExternalLinkage.
llvm-svn: 178768
This mostly reverts 178733, but keeps the tests.
I don't claim to understand how hidden sub modules work or when we need to see
them (is that documented?), but this has the same semantics and avoids adding
hasExternalLinkageUncached which has the same foot gun potential as the old
hasExternalLinkage.
Last but not least, not computing linkage when it is not needed is more
efficient.
llvm-svn: 178739
This test was exactly the opposite of what it should be. We should check if
there old decl has linkage (where it makes sense) and if the new decl has
the extern keyword.
llvm-svn: 178735
caching the linkage for a declaration before we set up its redeclaration chain,
when determining whether a declaration could be a redeclaration of something
from an unimported submodule. We actually want to look at the declaration as if
it were not a redeclaration here, so compute the linkage but don't cache it.
llvm-svn: 178733
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
Doxygen treats "@command" the same as "\command" in a doc comment, so
whenever we talk about Objective-C things like "@interface" we have to
make sure to escape them.
Let's try to keep Clang -Wdocumentation-clean!
llvm-svn: 178603
variable in a C99 inline (but not static-inline or extern-inline)
function definition.
The standard doesn't actually say that this doesn't apply to
"extern inline" definitions, but that seems like a useful extension,
and it at least doesn't have the obvious flaw that a static
mutable variable in an externally-available definition does.
rdar://13535367
llvm-svn: 178520
visible. There's a lot of potential badness in how we're modelling
these things, but getting this much correct is reasonably easy.
rdar://13535367
llvm-svn: 178488
We already avoided warning for
extern "C" const char *Version_string = "2.9";
now we also don't produce any warnings for
extern "C" {
extern const char *Version_string2 = "2.9";
}
llvm-svn: 178333
picking up cleanups from earlier in the statement. Also fix a
crash-on-invalid where a reference to an invalid decl from an
enclosing scope was causing an expression to fail to build, but
only *after* a cleanup was registered from that statement,
causing an assertion downstream.
The crash-on-valid is rdar://13459289.
llvm-svn: 177692
Before this patch we would compute the linkage lazily and cache it. When the
AST was modified in ways that could change the value, we would invalidate the
cache.
That was fairly brittle, since any code could ask for the a linkage before
the correct value was available.
We should change the API to one where the linkage is computed explicitly and
trying to get it when it is not available asserts.
This patch is a first step in that direction. We still compute the linkage
lazily, but instead of invalidating a cache, we assert that the AST
modifications didn't change the result.
llvm-svn: 176999
extern "C" {
void test5_f() {
extern int test5_b;
}
}
static float test5_b;
This patch makes us report one for
extern "C" {
void test6_f() {
extern int test6_b;
}
}
extern "C" {
static float test6_b;
}
Not because we think the declaration would be extern C, but because of the rule:
An entity with C language linkage shall not be declared with the same name as an entity in global scope...
We were just not looking past the extern "C" to see if the decl was in global
scope.
llvm-svn: 176875
Without this patch we produce an error for
extern "C" {
void f() {
extern int b;
}
}
extern "C" {
extern float b;
}
but not for
extern "C" {
void f() {
extern int b;
}
}
extern "C" {
float b;
}
llvm-svn: 176867
the normal attribute-merging path, because we can't merge alignment attributes
without knowing the complete set of alignment attributes which apply to a
particular declaration.
llvm-svn: 175861
control the visibility of a type for the purposes of RTTI
and template argument restrictions independently of how
visibility propagates to its non-type member declarations.
Also fix r175326 to not ignore template argument visibility
on a template explicit instantiation when a member has
an explicit attribute but the instantiation does not.
The type_visibility work is rdar://11880378
llvm-svn: 175587
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
I added hasCLanguageLinkage while fixing some language linkage bugs some
time ago so that I wouldn't have to check all users of isExternC. It turned
out to be a much longer detour than expected, but this patch finally
merges the two again. The isExternC function now implements just the
standard notion of having C language linkage.
llvm-svn: 175119
some cases where functions with no language linkage were being treated as having
C language linkage. In particular, don't warn in
extern "C" {
static NonPod foo();
}
Since getLanguageLinkage checks the language linkage, the linkage computation
cannot use the language linkage. Break the loop by checking just the context
in the linkage computation.
llvm-svn: 175117
If the member has an initializer, assume it was probably intended to be static
and suggest/recover with that.
If the member doesn't have an initializer, assume it was probably intended to
be const instead of constexpr and suggest that.
(if the attempt to apply these changes fails, don't make any suggestion &
produce the same diagnostic experience as before. The only case where this can
come up that I know of is with a mutable constexpr with an initializer, since
mutable is incompatible with static (but it's already incompatible with
const anyway))
llvm-svn: 173873
This required plumbing through a new flag to determine whether a ParmVarDecl is
actually a parameter of a function declaration (as opposed to a function
typedef etc, where the attribute is prohibited). Weirdly, this attribute (just
like [[noreturn]]) cannot be applied to a function type, just to a function
declaration (and its parameters).
llvm-svn: 173726
Title: [PR9027] volatile struct bug: member is not loaded at -O;
This is caused by last flag passed to @llvm.memcpy being false,
not honoring that aggregate has at least one 'volatile' data member
(even though aggregate itself has not been qualified as 'volatile'.
As a result, optimization optimizes away the memcpy altogether.
Patch review by John MaCall (I still need to fix up a test though).
llvm-svn: 173535
never key functions. We did not implement that rule for the
iOS ABI, which was driven by what was implemented in gcc-4.2.
However, implement it now for other ARM-based platforms.
llvm-svn: 173515
and split it out of -Wgnu into its own warning flag.
* In C++11, this is now a hard error (GCC has no extension here in C++11 mode).
The error can be disabled with -Wno-static-float-init, and has a fixit to
add 'constexpr'.
* In C++98, this is still an ExtWarn, but is now controlled by
-Wstatic-float-init as well as -Wgnu.
llvm-svn: 173414
Introduce a spelling index to Attr class, which is an index into the attribute spelling list of an attribute defined in Attr.td.
This index will determine the actual spelling used by an attribute, as it incorporates both the syntax and naming of the attribute.
When constructing an attribute AST node, the spelling index is computed based on attribute kind, scope (if it's a C++11 attribute), and
name, then passed to Attr that will use the index to print itself.
Thanks to Richard Smith for the idea and review.
llvm-svn: 173358
The warning is still under -Wuninitialized (although technically this
is defined behavior), but under a subgroup -Wstatic-self-init.
This addresses PR 10265.
llvm-svn: 172878
it apart from [[gnu::noreturn]] / __attribute__((noreturn)), since their
semantics are not equivalent (for instance, we treat [[gnu::noreturn]] as
affecting the function type, whereas [[noreturn]] does not).
llvm-svn: 172691
This fixes pr14946. The problem was that the linkage computation was done too
early, so things like "extern int a;" would be given external linkage, even if
a previous declaration was static.
llvm-svn: 172667
consider (sub)module visibility.
The bulk of this change replaces myriad hand-rolled loops over the
linked list of Objective-C categories/extensions attached to an
interface declaration with loops using one of the four new category
iterator kinds:
visible_categories_iterator: Iterates over all visible categories
and extensions, hiding any that have their "hidden" bit set. This is
by far the most commonly used iterator.
known_categories_iterator: Iterates over all categories and
extensions, ignoring the "hidden" bit. This tends to be used for
redeclaration-like traversals.
visible_extensions_iterator: Iterates over all visible extensions,
hiding any that have their "hidden" bit set.
known_extensions_iterator: Iterates over all extensions, whether
they are visible to normal name lookup or not.
The effect of this change is that any uses of the visible_ iterators
will respect module-import visibility. See the new tests for examples.
Note that the old accessors for categories and extensions are gone;
there are *Raw() forms for some of them, for those (few) areas of the
compiler that have to manipulate the linked list of categories
directly. This is generally discouraged.
Part two of <rdar://problem/10634711>.
llvm-svn: 172665
overriding and overridden method, allow the overridden method to have
a narrower contract (introduced earlier, deprecated/obsoleted later)
than the overriding method. Fixes <rdar://problem/12992023>.
llvm-svn: 172567
ActOnFinishFullExpr that some of its checks only apply to discarded-value
expressions. This adds missing checks for unexpanded variadic template
parameter packs to a handful of constructs.
llvm-svn: 172485
The testcase in pr14929 shows that this is extremely hard to do. If we choose
to apply the attribute, that causes the visibility of some decls to change and
that can happen really late (during codegen).
Current gcc warns and ignores the attribute in this testcase with a warning.
This suggest that the correct solution is to find a point in the compilation
where we can compute the visibility and
* assert it was never computed before
* reject any attempts to compute it again in the future (with warnings).
llvm-svn: 172305
which a particular declaration resides. Use this information to
customize the "definition of 'blah' must be imported from another
module" diagnostic with the module the user actually has to
import. Additionally, recover by importing that module, so we don't
complain about other names in that module.
Still TODO: coming up with decent Fix-Its for these cases, and expand
this recovery approach for other name lookup failures.
llvm-svn: 172290
(because they are part of some module) but have not been made visible
(because they are in a submodule that wasn't imported), filter out
those declarations unless both the old declaration and the new
declaration have external linkage. When one or both has internal
linkage, there should be no conflict unless both are imported.
llvm-svn: 171925
To do so we have to wait until we know that the type of a variable has been
deduced. Sema::FinalizeDeclaration is the first callback that is used for
decl with or without initializers.
llvm-svn: 171458
This patch moves hasCLanguageLinkage to be VarDecl and FunctionDecl methods
so that they can be used from SemaOverload.cpp and then fixes the logic
in Sema::IsOverload.
llvm-svn: 171193
the body of a functions. The problem was that hasBody looks at the entire chain
and causes problems to -fvisibility-inlines-hidden if the cache was not
invalidated.
Original message:
Cache visibility of decls.
This unifies the linkage and visibility caching. I first implemented this when
working on pr13844, but the previous fixes removed the performance advantage of
this one.
This is still a step in the right direction for making linkage and visibility
cheap to use.
llvm-svn: 171053
This unifies the linkage and visibility caching. I first implemented this when
working on pr13844, but the previous fixes removed the performance advantage of
this one.
This is still a step in the right direction for making linkage and visibility
cheap to use.
llvm-svn: 171048
This was removed with -Wunique-enum, which is still removed. The
corresponding thread on cfe-comments for that warning is here:
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2012-September/024224.html
If we get specific user feedback for -Wduplicate-enum we can evaluate
whether or not to keep it.
llvm-svn: 170974
When we are visiting the extern declaration of 'i' in
static int i = 99;
int foo() {
extern int i;
return i;
}
We should not try to handle it as if it was an function static. That is, we
must consider the written storage class.
Fixing this then exposes that the assert in EmitGlobalVarDeclLValue and the
if leading to its call are not completely accurate. They were passing before
because the second decl was marked as having external storage. I changed them
to check the linkage, which I find easier to understand.
Last but not least, there is something strange going on with cuda and opencl.
My guess is that the linkage computation for these languages needs to be
audited, but I didn't want to change that in this patch so I just updated
the storage classes to keep the current behavior.
Thanks to Reed Kotler for reporting this.
llvm-svn: 170827