* Fixes a rather egregious bug with respect to the inability to return arbitrary objects from py::init (was causing aliasing of multiple py::object -> native instance).
* Makes Modules and Operations referencable types so that they can be reliably depended on.
* Uniques python operation instances within a context. Opens the door for further accounting.
* Next I will retrofit region and block to be dependent on the operation, and I will attempt to model the API to avoid detached regions/blocks, which will simplify things a lot (in that world, only operations can be detached).
* Added quite a bit of test coverage to check for leaks and reference issues.
* Supercedes: https://reviews.llvm.org/D87213
Differential Revision: https://reviews.llvm.org/D87958
* Per thread https://llvm.discourse.group/t/revisiting-ownership-and-lifetime-in-the-python-bindings/1769
* Reworks contexts so it is always possible to get back to a py::object that holds the reference count for an arbitrary MlirContext.
* Retrofits some of the base classes to automatically take a reference to the context, elimintating keep_alives.
* More needs to be done, as discussed, when moving on to the operations/blocks/regions.
Differential Revision: https://reviews.llvm.org/D87886
* This is just enough to create regions/blocks and iterate over them.
* Does not yet implement the preferred iteration strategy (python pseudo containers).
* Refinements need to come after doing basic mappings of operations and values so that the whole hierarchy can be used.
Differential Revision: https://reviews.llvm.org/D86683
* Generic mlir.ir.Attribute class.
* First standard attribute (mlir.ir.StringAttr), following the same pattern as generic vs standard types.
* NamedAttribute class.
Differential Revision: https://reviews.llvm.org/D86250
* The binding for Type is trivial and should be non-controversial.
* The way that I define the IntegerType should serve as a pattern for what I want to do next.
* I propose defining the rest of the standard types in this fashion and then generalizing for dialect types as necessary.
* Essentially, creating/accessing a concrete Type (vs interacting with the string form) is done by "casting" to the concrete type (i.e. IntegerType can be constructed with a Type and will throw if the cast is illegal).
* This deviates from some of our previous discussions about global objects but I think produces a usable API and we should go this way.
Differential Revision: https://reviews.llvm.org/D86179