This is the more natural lowering, and presents more opportunities to
reduce 64-bit ops to 32-bit.
This should also help avoid issues graphics shaders have had with
64-bit values, and simplify argument lowering in globalisel.
llvm-svn: 366578
When it is AReg_1024 this results in unnecessary copying into
AGPRs of a 32 element vectors even though they are not intended
for an mfma instruction.
Differential Revision: https://reviews.llvm.org/D64815
llvm-svn: 366252
Insert these during codegenprepare.
This works around a DAG issue where generic combines eliminate the and
asserting the high bits are zero, which then exposes an unknown read
source to the mul combine. It doesn't worth the hassle of trying to
insert an AssertZext or something to try to deal with it.
llvm-svn: 366094
These should really use v32f32, but were defined as v32i32
due to the lack of the v32f32 type.
Differential Revision: https://reviews.llvm.org/D64667
llvm-svn: 365972
Before 2018, mesa used to use byval interchangably with inreg, which
didn't really make sense. Fix tests still using it to avoid breaking
in a future commit.
llvm-svn: 365953
Function return instruction lowering, currently uses the fixed register pair s[30:31] for holding
the return address. It can be any SGPR pair other than the CSRs. Created an SGPR pair sub-register class
exclusive of the CSRs, and used this regclass while lowering the return instruction.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D63924
llvm-svn: 365512
Make the FP register callee saved.
This is tricky because now the FP needs to be spilled in the prolog
relative to the incoming SP register, rather than the frame register
used throughout the rest of the function. I don't like how this
bypassess the standard mechanism for CSR spills just to get the
correct insert point. I may look for a better solution, since all CSR
VGPRs may also need to have all lanes activated. Another option might
be to make getFrameIndexReference change the base register if the
frame index is a CSR, and then try to figure out the right insertion
point in emitProlog.
If there is a free VGPR lane available for SGPR spilling, try to use
it for the FP. If that would require intrtoducing a new VGPR spill,
try to use a free call clobbered SGPR. Only fallback to introducing a
new VGPR spill as a last resort.
This also doesn't attempt to handle SGPR spilling with scalar stores.
llvm-svn: 365372
Summary:
Since the changes to introduce vec3 and vec5, INSERT_VECTOR for these
sizes has been marked "expand", which made LegalizeDAG lower it to loads
and stores via a stack slot. The code got optimized a bit later, but the
now-unused stack slot was never deleted.
This commit avoids that problem by custom lowering INSERT_SUBVECTOR into
an EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT for each element in the
subvector to insert.
V2: Addressed review comments re test.
Differential Revision: https://reviews.llvm.org/D63160
Change-Id: I9e3c13e36f68cfa3431bb9814851cc1f673274e1
llvm-svn: 365148
Ordinarily it is lowered as a build_vector of each extract_vector_elt,
which in turn get lowered to bitcasts and bit shifts. Very little
understand the lowered extract pattern, resulting in much worse
code. We treat concat_vectors of v2i16 as legal, so prefer that.
llvm-svn: 364959
Summary:
ds_ordered_count can now simultaneously operate on up to 4 dwords
in a single instruction, which are taken from (and returned to)
lanes 0..3 of a single VGPR.
Change-Id: I19b6e7b0732b617c10a779a7f9c0303eec7dd276
Reviewers: mareko, arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63716
llvm-svn: 364815
Summary:
The symbols use the processor-specific SHN_AMDGPU_LDS section index
introduced with a previous change. The linker is then expected to resolve
relocations, which are also emitted.
Initially disabled for HSA and PAL environments until they have caught up
in terms of linker and runtime loader.
Some notes:
- The llvm.amdgcn.groupstaticsize intrinsics can no longer be lowered
to a constant at compile times, which means some tests can no longer
be applied.
The current "solution" is a terrible hack, but the intrinsic isn't
used by Mesa, so we can keep it for now.
- We no longer know the full LDS size per kernel at compile time, which
means that we can no longer generate a relevant error message at
compile time. It would be possible to add a check for the size of
individual variables, but ultimately the linker will have to perform
the final check.
Change-Id: If66dbf33fccfbf3609aefefa2558ac0850d42275
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: qcolombet, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61494
llvm-svn: 364297
Every called function could possibly need this to calculate the
absolute address of stack objectst, and this avoids inserting a copy
around every call site in the kernel. It's also somewhat cleaner to
keep this in a callee saved SGPR.
llvm-svn: 363990
This is incomplete, and ideally these would all be removed, but it's
better to localize them to the subtarget first with comments about
what they're for.
llvm-svn: 363902
This reapplies r363678, using the correct chain for the CopyToReg for
v0. glueCopyToM0 counterintuitively changes the operands of the
original node.
llvm-svn: 363870
Summary:
Instead of encoding a high-word of 0 using a fake TargetGlobalAddress,
just use a literal target constant. This simplifies some subsequent changes.
The generated assembly is now more explicit about the kind of relocation
that is to be used.
Change-Id: I066835202d23b5941fa7a358eb4b89e9b71ab6f8
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61491
llvm-svn: 363516
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
"Divergence driven ISel. Assign register class for cross block values
according to the divergence."
that discovered the design flaw leading to several issues that
required to be solved before.
This change reverts AMDGPU specific changes and keeps common part
unaffected.
llvm-svn: 362749
This forced the caller to be aware of this, which is an ugly ABI
feature.
Partially reverts r295877. The original reasons for doing this are
mostly fixed. Alloca is now in a non-0 address space, so it should be
OK to have 0 as a valid pointer. Since we treat the absolute address
as the pointer value, this part only really needed to apply to
kernels.
Since r357093, we avoid the need to increment/decrement the offset
register in more cases, and since r354816 the scavenger can fail
without spilling, so it's less critical that we try to avoid an offset
that fits in the MUBUF offset.
Restrict to callable functions for now to split this into 2 steps to
limit thte number of test updates and in case anything breaks.
llvm-svn: 362665
Since the beginning, the offset of a frame index has been consistently
interpreted backwards. It was treating it as an offset from the
scratch wave offset register as a frame register. The correct
interpretation is the offset from the SP on entry to the function,
before the prolog. Frame index elimination then should select either
SP or another register as an FP.
Treat the scratch wave offset on kernel entry as the pre-incremented
SP. Rely more heavily on the standard hasFP and frame pointer
elimination logic, and clean up the private reservation code. This
saves a copy in most callee functions.
The kernel prolog emission code is still kind of a mess relying on
checking the uses of physical registers, which I would prefer to
eliminate.
Currently selection directly emits MUBUF instructions, which require
using a reference to some register. Use the register chosen for SP,
and then ignore this later. This should probably be cleaned up to use
pseudos that don't refer to any specific base register until frame
index elimination.
Add a workaround for shaders using large numbers of SGPRs. I'm not
sure these cases were ever working correctly, since as far as I can
tell the logic for figuring out which SGPR is the scratch wave offset
doesn't match up with the shader input initialization in the shader
programming guide.
llvm-svn: 362661
For some reason multiple places need to do this, and the variant the
loop unroller and inliner use was not handling it.
Also, introduce a new wrapper to be slightly more precise, since on
AMDGPU some addrspacecasts are free, but not no-ops.
llvm-svn: 362436
Summary:
- There's a regression due to the cross-block RC assignment. Use the
proper way to derive the output register RC in inline asm.
Reviewers: rampitec, alex-t
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, dstuttard, tpr, t-tye, eraman, hiraditya, llvm-commits, yaxunl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62537
llvm-svn: 361868
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
This commit was reverted because of the build failure.
The reason was mlformed patch.
Build failure fixed.
llvm-svn: 361741
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
llvm-svn: 361644
We were assuming a much larger possible per-wave visible stack
allocation than is possible:
faa3ae5138/src/core/runtime/amd_gpu_agent.cpp (L70)
Based on this, we can assume the high 15 bits of a frame index or sret
are 0. The frame index value is the per-lane offset, so the maximum
frame index value is MAX_WAVE_SCRATCH / wavesize.
Remove the corresponding subtarget feature and option that made
this configurable.
llvm-svn: 361541
We don't have FP exception limits in the IR constant folder for the binops (apart from strict ops),
so it does not make sense to have them here in the DAG either. Nothing else in the backend tries
to preserve exceptions (again outside of strict ops), so I don't see how this could have ever
worked for real code that cares about FP exceptions.
There are still cases (examples: unary opcodes in SDAG, FMA in IR) where we are trying (at least
partially) to preserve exceptions without even asking if the target supports FP exceptions. Those
should be corrected in subsequent patches.
Real support for FP exceptions requires several changes to handle the constrained/strict FP ops.
Differential Revision: https://reviews.llvm.org/D61331
llvm-svn: 359791
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
Since this can be set with s_setreg*, it should not be a subtarget
property. Set a default based on the calling convention, and Introduce
a new amdgpu-dx10-clamp attribute to override this if desired.
Also introduce a new amdgpu-ieee attribute to match.
The values need to match to allow inlining. I think it is OK for the
caller's dx10-clamp attribute to override the callee, but there
doesn't appear to be the infrastructure to do this currently without
definining the attribute in the generic Attributes.td.
Eventually the calling convention lowering will need to insert a mode
switch somewhere for these.
llvm-svn: 357302
Some image ops return three or five dwords. Previously, we modeled that
with a 4 or 8 dword register class. The register allocator could
cleverly spot that some subregs were dead and allocate something else
there, but that caused the de-optimization that waitcnt insertion would
think that the result was used immediately.
This commit allows such an image op to have a result with a three or
five dword result, avoiding the above de-optimization.
Differential Revision: https://reviews.llvm.org/D58905
Change-Id: I3651211bbd7ed22721ee7b9fefd7bcc60a809d8b
llvm-svn: 356757
Now we have vec3 MVTs, this commit implements dwordx3 variants of the
buffer intrinsics.
On gfx6, a dwordx3 buffer load intrinsic is implemented as a dwordx4
instruction, and a dwordx3 buffer store intrinsic is not supported.
We need to support the dwordx3 load intrinsic because it is generated by
subtarget-unaware code in InstCombine.
Differential Revision: https://reviews.llvm.org/D58904
Change-Id: I016729d8557b98a52f529638ae97c340a5922a4e
llvm-svn: 356755
They are not used by anything yet, but a subsequent commit will start
using them for image ops that return 5 dwords.
Differential Revision: https://reviews.llvm.org/D58903
Change-Id: I63e1904081e39a6d66e4eb96d51df25ad399d271
llvm-svn: 356735
Added support for dwordx3 for most load/store types, but not DS, and not
intrinsics yet.
SI (gfx6) does not have dwordx3 instructions, so they are not enabled
there.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58902
Change-Id: I913ef54f1433a7149da8d72f4af54dbb13436bd9
llvm-svn: 356659
Summary:
If an MIMG instruction has managed to get through to adjustWritemask in isel but
has no uses (and doesn't enable TFC) then prevent an assertion by not attempting
to adjust the writemask.
The instruction will be removed anyway.
Change-Id: I9a5dba6bafe1f35ac99c1b73df390936e2ac27a7
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58964
llvm-svn: 356540
I found this really weird WWM-related case whereby through the WWM
transformations our isel lowering was trying to promote 2 min's into a
min3 for the i8 type, which our hardware doesn't support.
The new min3_i8.ll test case would previously spew the error:
PromoteIntegerResult #0: t69: i8 = SMIN3 t70, Constant:i8<0>, t68
Before the simple fix to our isel lowering to not do it for i8 MVT's.
Differential Revision: https://reviews.llvm.org/D59543
llvm-svn: 356464
This commit allows v_cndmask_b32_e64 with abs, neg source
modifiers on src0, src1 to be assembled and disassembled.
This does appear to be allowed, even though they are floating point
modifiers and the operand type is b32.
To do this, I added src0_modifiers and src1_modifiers to the
MachineInstr, which involved fixing up several places in codegen and mir
tests.
Differential Revision: https://reviews.llvm.org/D59191
Change-Id: I69bf4a8c73ebc65744f6110bb8fc4e937d79fbea
llvm-svn: 356398
Add an experimental buffer fat pointer address space that is currently
unhandled in the backend. This commit reserves address space 7 as a
non-integral pointer repsenting the 160-bit fat pointer (128-bit buffer
descriptor + 32-bit offset) that is heavily used in graphics workloads
using the AMDGPU backend.
Differential Revision: https://reviews.llvm.org/D58957
llvm-svn: 356373
This has been a very painful missing feature that has made producing
reduced testcases difficult. In particular the various registers
determined for stack access during function lowering were necessary to
avoid undefined register errors in a large percentage of
cases. Implement a subset of the important fields that need to be
preserved for AMDGPU.
Most of the changes are to support targets parsing register fields and
properly reporting errors. The biggest sort-of bug remaining is for
fields that can be initialized from the IR section will be overwritten
by a default initialized machineFunctionInfo section. Another
remaining bug is the machineFunctionInfo section is still printed even
if empty.
llvm-svn: 356215
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
This avoids breaking possible value dependencies when sorting loads by
offset.
AMDGPU has some load instructions that write into the high or low bits
of the destination register, and have a tied input for the other input
bits. These can easily have the same base pointer, but be a swizzle so
the high address load needs to come first. This was inserting glue
forcing the opposite ordering, producing a cycle the InstrEmitter
would assert on. It may be potentially expensive to look for the
dependency between the other loads, so just skip any where this could
happen.
Fixes bug 40936 by reverting r351379, which added a hacky attempt to
fix this by adding chains in this case, which I think was just working
around broken glue before the InstrEmitter. The core of the patch is
re-implementing the fix for that problem.
llvm-svn: 355728
SITargetLowering::reassociateScalarOps() does not touch constants
so that DAGCombiner::ReassociateOps() does not revert the combine.
However a global address is not a ConstantSDNode.
Switched to the method used by DAGCombiner::ReassociateOps() itself
to detect constants.
Differential Revision: https://reviews.llvm.org/D58695
llvm-svn: 354926
Reassociate adds to collect scalar operands in a single
instruction when possible. That will result in a scalar
add followed by vector instead of two vector adds, thus
better utilizing SALU.
Differential Revision: https://reviews.llvm.org/D58220
llvm-svn: 354066
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Ensure the XOR in the waterfall loop for indirect addressing is considered a terminator.
Differential Revision: https://reviews.llvm.org/D57703
llvm-svn: 353207
Summary:
Incorrect code was generated when lowering insertelement operations
for vectors with 8 or 16 bit elements. The value being inserted was
not adjusted for the position of the element within the 32 bit word
and so only the low element within each 32 bit word could receive
the intended value.
Fixed by simply replicating the value to each element of a
congruent vector before the mask and or operation used to
update the intended element.
A number of affected LIT tests have been updated appropriately.
before the mask & or into the intended
Reviewers: arsenm, nhaehnle
Reviewed By: arsenm
Subscribers: llvm-commits, arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57588
llvm-svn: 352885
Since these pass the pointer in m0 unlike other DS instructions, these
need to worry about whether the address is uniform or not. This
assumes the address is dynamically uniform, and just uses
readfirstlane to get a copy into an SGPR.
I don't know if these have the same 16-bit add for the addressing mode
offset problem on SI or not, but I've just assumed they do.
Also includes some misc. changes to avoid test differences between the
LDS and GDS versions.
llvm-svn: 352422
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
For these loads that write to the HI part of a register, we should chain them to the op that writes to the LO part
of the register to maintain the appropriate order.
Reviewers:
rampitec, arsenm
Differential Revision:
https://reviews.llvm.org/D56454
llvm-svn: 351379
Summary:
This allows moving the condition from the intrinsic to the standard ICmp
opcode, so that LLVM can do simplifications on it. The icmp.i1 intrinsic
is an identity for retrieving the SGPR mask.
And we can also get the mask from and i1, or i1, xor i1.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52060
llvm-svn: 351150
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
This re-submit of the change also includes a slight modification in
SIISelLowering.cpp to work-around a compiler bug for the powerpc_le
platform that caused a buildbot failure on a previous submission.
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
Work around for ppcle compiler bug
Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b
llvm-svn: 351054
This removes check for single use from general ShrinkDemandedConstant
to the BE because of the AArch64 regression after D56289/rL350475.
After several hours of experiments I did not come up with a testcase
failing on any other targets if check is not performed.
Moreover, direct call to ShrinkDemandedConstant is not really needed
and superceed by SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D56406
llvm-svn: 350684
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 348050
Summary:
The VirtReg2Value mapping is crucial for getting consistently
reliable divergence information into the SelectionDAG. This
patch fixes a bunch of issues that lead to incorrect divergence
info and introduces tight assertions to ensure we don't regress:
1. VirtReg2Value is generated lazily; there were some cases where
a lookup was performed before all relevant virtual registers were
created, leading to an out-of-sync mapping. Those cases were:
- Complex code to lower formal arguments that generated CopyFromReg
nodes from live-in registers (fixed by never querying the mapping
for live-in registers).
- Code that generates CopyToReg for formal arguments that are used
outside the entry basic block (fixed by never querying the
mapping for Register nodes, which don't need the divergence info
anyway).
2. For complex values that are lowered to a sequence of registers,
all registers must be reflected in the VirtReg2Value mapping.
I am not adding any new tests, since I'm not actually aware of any
bugs that these problems are causing with trunk as-is. However,
I recently added a test case (in r346423) which fails when D53283 is
applied without this change. Also, the new assertions should provide
most of the effective test coverage.
There is one test change in sdwa-peephole.ll. The underlying issue
is that since the divergence info is now correct, the DAGISel will
select V_OR_B32 directly instead of S_OR_B32. This leads to an extra
COPY which affects the behavior of MachineLICM in a way that ends up
with the S_MOV_B32 with the constant in a different basic block than
the V_OR_B32, which is presumably what defeats the peephole.
Reviewers: alex-t, arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D54340
llvm-svn: 348049
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
My change svn-id: 347871 caused a buildbot failure due to an unused
variable def (used in an assert).
Change-Id: Ia882d18bb6fa79b4d7bbfda422b9ea5d23eab336
llvm-svn: 347876
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
This allows to avoid scratch use or indirect VGPR addressing for
small vectors.
Differential Revision: https://reviews.llvm.org/D54606
llvm-svn: 347231
An extractelement with non-constant index will be lowered either to
scratch or movrel loop in most cases. This patch converts such
instruction into a set of selects if vector size is not too big.
Differential Revision: https://reviews.llvm.org/D54351
llvm-svn: 346800
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
UBSan detected an error in our ISelLowering that is exposed only when
you have a dmask == 0x1. Fix this by adding in an explicit check to
ensure we don't do the UBSan detected shl << 32.
llvm-svn: 345962
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
Our a16 support was only enabled for sample/gather and buffer
load/store, but not for image load/store operations (which take an i16
as the pixel index rather than a half).
Fix our isel lowering and add test cases to prove it out.
Differential Revision: https://reviews.llvm.org/D53750
llvm-svn: 345710
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.
There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.
llvm-svn: 344914
Summary:
To workaround a hardware issue in the (base + offset) calculation
when base is negative. The impact on code quality should be limited
since SILoadStoreOptimizer still runs afterwards and is able to
combine loads/stores based on known sign information.
This fixes visible corruption in Hitman on SI (easily reproducible
by running benchmark mode).
Change-Id: Ia178d207a5e2ac38ae7cd98b532ea2ae74704e5f
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=99923
Reviewers: arsenm, mareko
Subscribers: jholewinski, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53160
llvm-svn: 344698
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 344696
The isAmdCodeObjectV2 is a misleading name which actually checks whether the os
is amdhsa or mesa.
Also add a test to make sure we do not generate old kernel header for code
object v3.
Differential Revision: https://reviews.llvm.org/D52897
llvm-svn: 343813
Summary:
The new buffer/tbuffer intrinsics handle an out-of-range immediate
offset by moving/adding offset&-4096 to a vgpr, leaving an in-range
immediate offset, with a chance of the move/add being CSEd for similar
loads/stores.
However it turns out that a negative offset in a vgpr is illegal, even
if adding the immediate offset makes it legal again.
Therefore, this commit disables the offset&-4096 thing if the offset is
negative.
Differential Revision: https://reviews.llvm.org/D52683
Change-Id: Ie02f0a74f240a138dc2a29d17cfbd9e350e4ed13
llvm-svn: 343672
If the alignment is at least 4, this should report true.
Something still seems off with how < 4-byte types are
handled here though.
Fixing this seems to change how some combines get
to where they get, but somehow isn't changing the net
result.
llvm-svn: 342879
Summary:
GFX9 and above support sin/cos instructions with a greater range and thus don't
require a fract instruction prior to invocation.
Added a subtarget feature to reflect this and added code to take advantage of
expanded range on GFX9+
Also updated the tests to check correct behaviour
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51933
Change-Id: I1c1f1d3726a5ae32116646ca5cfa1ab4ef69e5b0
llvm-svn: 342222
If an argument was passed on the stack, this
was using the default alignment.
I'm not sure there's an observable change from this. This
was observable due to bugs in expansion of unaligned
loads and stores, but since that is fixed I don't think
this matters much.
llvm-svn: 342133
This already worked if only one register piece was used,
but didn't if a type was split into multiple, unequal
sized pieces.
Fixes not splitting 3i16/v3f16 into two registers for
AMDGPU.
This will also allow fixing the ABI for 16-bit vectors
in a future commit so that it's the same for all subtargets.
llvm-svn: 341801
The intention is to enable the extract_vector_elt load combine,
and doing this for other operations interferes with more
useful optimizations on vectors.
Handle any type of load since in principle we should do the
same combine for the various load intrinsics.
llvm-svn: 341219
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
Summary:
Patch by Marek Olsak and David Stuttard, both of AMD.
This adds a new amdgcn intrinsic supporting s.buffer.load, in particular
multiple dword variants. These are convenient to use from some front-end
implementations.
Also modified the existing llvm.SI.load.const intrinsic to common up the
underlying implementation.
This modification also requires that we can lower to non-uniform loads correctly
by splitting larger dword variants into sizes supported by the non-uniform
versions of the load.
V2: Addressed minor review comments.
V3: i1 glc is now i32 cachepolicy for consistency with buffer and
tbuffer intrinsics, plus fixed formatting issue.
V4: Added glc test.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51098
Change-Id: I83a6e00681158bb243591a94a51c7baa445f169b
llvm-svn: 340684
This was hackily adding in the 4-bytes reserved for the callee's
emergency stack slot. Treat it like a normal stack allocation
so we get the correct alignment padding behavior. This fixes
an inconsistency between the caller and callee.
llvm-svn: 340396
Summary:
This commit adds new intrinsics
llvm.amdgcn.raw.buffer.load
llvm.amdgcn.raw.buffer.load.format
llvm.amdgcn.raw.buffer.load.format.d16
llvm.amdgcn.struct.buffer.load
llvm.amdgcn.struct.buffer.load.format
llvm.amdgcn.struct.buffer.load.format.d16
llvm.amdgcn.raw.buffer.store
llvm.amdgcn.raw.buffer.store.format
llvm.amdgcn.raw.buffer.store.format.d16
llvm.amdgcn.struct.buffer.store
llvm.amdgcn.struct.buffer.store.format
llvm.amdgcn.struct.buffer.store.format.d16
llvm.amdgcn.raw.buffer.atomic.*
llvm.amdgcn.struct.buffer.atomic.*
with the following changes from the llvm.amdgcn.buffer.*
intrinsics:
* there are separate raw and struct versions: raw does not have an
index arg and sets idxen=0 in the instruction, and struct always sets
idxen=1 in the instruction even if the index is 0, to allow for the
fact that gfx9 does bounds checking differently depending on whether
idxen is set;
* there is a combined cachepolicy arg (glc+slc)
* there are now only two offset args: one for the offset that is
included in bounds checking and swizzling, to be split between the
instruction's voffset and immoffset fields, and one for the offset
that is excluded from bounds checking and swizzling, to go into the
instruction's soffset field.
The AMDISD::BUFFER_* SD nodes always have an index operand, all three
offset operands, combined cachepolicy operand, and an extra idxen
operand.
The obsolescent llvm.amdgcn.buffer.* intrinsics continue to work.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50306
Change-Id: If897ea7dc34fcbf4d5496e98cc99a934f62fc205
llvm-svn: 340269
Summary:
This commit adds new intrinsics
llvm.amdgcn.raw.tbuffer.load
llvm.amdgcn.struct.tbuffer.load
llvm.amdgcn.raw.tbuffer.store
llvm.amdgcn.struct.tbuffer.store
with the following changes from the llvm.amdgcn.tbuffer.* intrinsics:
* there are separate raw and struct versions: raw does not have an index
arg and sets idxen=0 in the instruction, and struct always sets
idxen=1 in the instruction even if the index is 0, to allow for the
fact that gfx9 does bounds checking differently depending on whether
idxen is set;
* there is a combined format arg (dfmt+nfmt)
* there is a combined cachepolicy arg (glc+slc)
* there are now only two offset args: one for the offset that is
included in bounds checking and swizzling, to be split between the
instruction's voffset and immoffset fields, and one for the offset
that is excluded from bounds checking and swizzling, to go into the
instruction's soffset field.
The AMDISD::TBUFFER_* SD nodes always have an index operand, all three
offset operands, combined format operand, combined cachepolicy operand,
and an extra idxen operand.
The tbuffer pseudo- and real instructions now also have a combined
format operand.
The obsolescent llvm.amdgcn.tbuffer.* and llvm.SI.tbuffer.store
intrinsics continue to work.
V2: Separate raw and struct intrinsics.
V3: Moved extract_glc and extract_slc defs to a more sensible place.
V4: Rebased on D49995.
V5: Only two separate offset args instead of three.
V6: Pseudo- and real instructions have joint format operand.
V7: Restored optionality of dfmt and nfmt in assembler.
V8: Addressed minor review comments.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49026
Change-Id: If22ad77e349fac3a5d2f72dda53c010377d470d4
llvm-svn: 340268
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
This will allow the library to just use __builtin_expf directly
without expanding this itself. Note f64 still won't work because
there is no exp instruction for it.
llvm-svn: 339902
Handle fmul, fsub and preserve flags.
Also really test minnum/maxnum reductions.
The existing tests were only checking from
minnum/maxnum matched from a fast math compare
and select which is not the same.
llvm-svn: 339820
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
If one of the elements is undef, use the canonicalized constant
from the other element instead of 0.
Splat vectors are more useful for other optimizations, such
as matching vector clamps. This was breaking on clamps
of half3 from the undef 4th component.
llvm-svn: 339512
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Not sure why this was checking for denormals for f16.
My interpretation of the IEEE standard is conversions
should produce a canonical result, and the ISA manual
says denormals are created when appropriate.
llvm-svn: 339064
If denormals are enabled, denormals are canonical.
Also fix a few other issues. minnum/maxnum are supposed
to canonicalize. Temporarily improve workaround for the
instruction behavior change in gfx9.
Handle selects and fcopysign.
The tests were also largely broken, since they were
checking for a flush used on some targets after the
store of the result.
llvm-svn: 339061