This removes two feature flags from `AArch64TargetInfo` class:
- `HasHBC`: this feature does not involve generating any IR intrinsics,
so clang does not need to know about whether it is set
- `HasCrypto`: this feature is deprecated in favor of finer grained
features such as AES, SHA2, SHA3 and SM4. The associated ACLE macro
__ARM_FEATURE_CRYPTO is thus no longer used.
Differential Revision: https://reviews.llvm.org/D118757
Branch protection in M-class is supported by
- Armv8.1-M.Main
- Armv8-M.Main
- Armv7-M
Attempting to enable this for other architectures, either by
command-line (e.g -mbranch-protection=bti) or by target attribute
in source code (e.g. __attribute__((target("branch-protection=..."))) )
will generate a warning.
In both cases function attributes related to branch protection will not
be emitted. Regardless of the warning, module level attributes related to
branch protection will be emitted when it is enabled via the command-line.
The following people also contributed to this patch:
- Victor Campos
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D115501
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
This introduces clang command line support for the new Armv8.8-A and
Armv9.3-A instructions for standardising memcpy, memset and memmove
operations, which was previously introduced into LLVM in
https://reviews.llvm.org/D116157.
Patch by Lucas Prates, Tomas Matheson and Son Tuan Vu.
Differential Revision: https://reviews.llvm.org/D117271
This introduces clang command line support for new Armv8.8-A and
Armv9.3-A Hinted Conditional Branches feature, previously introduced
into LLVM in https://reviews.llvm.org/D116156.
Patch by Tomas Matheson and Son Tuan Vu.
Differential Revision: https://reviews.llvm.org/D116939
This patch introduces support for targetting the Armv9.3-A architecture,
which should map to the existing Armv8.8-A extensions.
Differential Revision: https://reviews.llvm.org/D116159
This is the first commit in a series that implements support for
"armv8.8-a" architecture. This should contain all the necessary
boilerplate to make the 8.8-A architecture exist from LLVM and Clang's
point of view: it adds the new arch as a subtarget feature, a definition
in TargetParser, a name on the command line, an appropriate set of
predefined macros, and adds appropriate tests. The new architecture name
is supported in both AArch32 and AArch64.
However, in this commit, no actual _functionality_ is added as part of
the new architecture. If you specify -march=armv8.8a, the compiler
will accept it and set the right predefines, but generate no code any
differently.
Differential Revision: https://reviews.llvm.org/D115694
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
This change introduces subtarget features to predicate certain
instructions and system registers that are available only on
'A' profile targets. Those features are not present when
targeting a generic CPU, which is the default processor.
In other words the generic CPU now means the intersection of
'A' and 'R' profiles. To maintain backwards compatibility we
enable the features that correspond to -march=armv8-a when the
architecture is not explicitly specified on the command line.
References: https://developer.arm.com/documentation/ddi0600/latest
Differential Revision: https://reviews.llvm.org/D110065
armv9-a, armv9.1-a and armv9.2-a can be targeted using the -march option
both in ARM and AArch64.
- Armv9-A maps to Armv8.5-A.
- Armv9.1-A maps to Armv8.6-A.
- Armv9.2-A maps to Armv8.7-A.
- The SVE2 extension is enabled by default on these architectures.
- The cryptographic extensions are disabled by default on these
architectures.
The Armv9-A architecture is described in the Arm® Architecture Reference
Manual Supplement Armv9, for Armv9-A architecture profile
(https://developer.arm.com/documentation/ddi0608/latest).
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109517
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
This patch changes the AArch32 crypto instructions (sha2 and aes) to
require the specific sha2 or aes features. These features have
already been implemented and can be controlled through the command
line, but do not have the expected result (i.e. `+noaes` will not
disable aes instructions). The crypto feature retains its existing
meaning of both sha2 and aes.
Several small changes are included due to the knock-on effect this has:
- The AArch32 driver has been modified to ensure sha2/aes is correctly
set based on arch/cpu/fpu selection and feature ordering.
- Crypto extensions are permitted for AArch32 v8-R profile, but not
enabled by default.
- ACLE feature macros have been updated with the fine grained crypto
algorithms. These are also used by AArch64.
- Various tests updated due to the change in feature lists and macros.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D99079
This patch implements the __rndr and __rndrrs intrinsics to provide access to the random
number instructions introduced in Armv8.5-A. They are only defined for the AArch64
execution state and are available when __ARM_FEATURE_RNG is defined.
These intrinsics store the random number in their pointer argument and return a status
code if the generation succeeded. The difference between __rndr __rndrrs, is that the latter
intrinsic reseeds the random number generator.
The instructions write the NZCV flags indicating the success of the operation that we can
then read with a CSET.
[1] https://developer.arm.com/docs/101028/latest/data-processing-intrinsics
[2] https://bugs.llvm.org/show_bug.cgi?id=47838
Differential Revision: https://reviews.llvm.org/D98264
Change-Id: I8f92e7bf5b450e5da3e59943b53482edf0df6efc
This introduces command-line support for the 'armv8.7-a' architecture name
(and an alias without the '-', as usual), and for the 'ls64' extension name.
Based on patches written by Simon Tatham.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D91776
This patch implements the definition of __ARM_FEATURE_ATOMICS and fixes the
missing definition of __ARM_FEATURE_CRC32 for Armv8.1-A.
Differential Revision: https://reviews.llvm.org/D91438
Summary:
The following feature macros have been added:
__ARM_FEATURE_SVE_BF16
__ARM_FEATURE_SVE_MATMUL_INT8
__ARM_FEATURE_SVE_MATMUL_FP32
__ARM_FEATURE_SVE_MATMUL_FP64
The driver has been updated to enable them accordingly to the value of
the target feature passed at command line.
The SVE ACLE tests using the macros have been modified to work with
the target feature instead of passing the macro at command line.
Reviewers: sdesmalen, efriedma, c-rhodes, kmclaughlin, SjoerdMeijer, rengolin
Subscribers: tschuett, kristof.beyls, rkruppe, psnobl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82623
This patch enables the following macros when their corresponding
target attributes are set:
__ARM_FEATURE_SVE (+sve)
__ARM_FEATURE_SVE2 (+sve2)
__ARM_FEATURE_SVE2_AES (+sve2-aes)
__ARM_FEATURE_SVE2_BITPERM (+sve2-bitperm)
__ARM_FEATURE_SVE2_SHA3 (+sve2-sha3)
__ARM_FEATURE_SVE2_SM4 (+sve2-sm4)
This implies that the base SVE and SVE2 ACLE (00bet2) are now feature
complete, meaning that all intrinsics are implemented in LLVM and Clang.
Disclaimer:
To implement the ACLE we have had to fix up many parts of LLVM to make it
support scalable vectors. We have also used many target-specific intrinsics
to reduce reliance on parts of LLVM where we know scalable vectors may
not yet be handled properly (e.g. some transformation might drop the
'scalable' flag on a vector type). While we've done a best effort with
the limited testing that is available to us, we're still working to improve the
stability of the implementation. Additionally, Clang may print warnings
that code may have miscompiled. We find this often to be a false alarm
where the wrong interfaces have been used in LLVM and where resulting
code is not actually incorrect. However, this warrants a bug report
and investigation. If you find any bugs or issues, please raise them on
bugs.llvm.org and let us know!
Reviewers: rengolin, efriedma, david-arm, SjoerdMeijer
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D81725
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch64 only (no SVE or Neon)
- Intrinsics Support for AArch64 Armv8.6a Matrix Multiplication Instructions (No bfloat16 matrix multiplication)
No IR types or C Types are needed for this extension.
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: ostannard, t.p.northover, rengolin, kmclaughlin
Reviewed By: kmclaughlin
Subscribers: kmclaughlin, kristof.beyls, hiraditya, danielkiss,
cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77871
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html
In detail this patch
- march options for armv8.6-a
- BFloat16 assembly
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson
Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson
Reviewed By: SjoerdMeijer
Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D76062
Summary:
Adds the constraints described below to ensure that we
can tie variables of SVE ACLE types to operands in inline-asm:
- y: SVE registers Z0-Z7
- Upl: One of the low eight SVE predicate registers (P0-P7)
- Upa: Full range of SVE predicate registers (P0-P15)
Reviewers: sdesmalen, huntergr, rovka, cameron.mcinally, efriedma, rengolin
Reviewed By: efriedma
Subscribers: miyuki, tschuett, rkruppe, psnobl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75690
The jcvt intrinsic defined in ACLE [1] is available when ARM_FEATURE_JCVT is defined.
This change introduces the AArch64 intrinsic, wires it up to the instruction and a new clang builtin function.
The __ARM_FEATURE_JCVT macro is now defined when an Armv8.3-A or higher target is used.
I've implemented the target detection logic in Clang so that this feature is enabled for architectures from armv8.3-a onwards (so -march=armv8.4-a also enables this, for example).
make check-all didn't show any new failures.
[1] https://developer.arm.com/docs/101028/latest/data-processing-intrinsics
Differential Revision: https://reviews.llvm.org/D64495
llvm-svn: 366197
These macro definitions don't depend on the template parameter, so they
don't need to be part of the template. Move them to a .cpp file.
llvm-svn: 365556
According to alignment section in below ARM64 ABI document, MSVC could increase
alignment of global data based on its total size. Clang doesn't do this. Compile
the same symbol into different alignments by Clang and MSVC could cause link
error because some instruction encodings, like 64-bit LDR/STR with immediate,
require the target to be 8 bytes aligned, and linker could choose code stream
with such LDR/STR instruction from MSVC and 4 bytes aligned data from Clang into
final image, which actually cannot be linked together
(see https://bugs.llvm.org/show_bug.cgi?id=41506 for more details).
https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=vs-2019#alignment
Differential Revision: https://reviews.llvm.org/D61225
llvm-svn: 359744
This provides intrinsics support for Memory Tagging Extension (MTE),
which was introduced with the Armv8.5-a architecture.
These intrinsics are available when __ARM_FEATURE_MEMORY_TAGGING is defined.
Each intrinsic is described in detail in the ACLE Q1 2019 documentation:
https://developer.arm.com/docs/101028/latest
Reviewed By: Tim Nortover, David Spickett
Differential Revision: https://reviews.llvm.org/D60485
llvm-svn: 359348
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Generate the FP16FML intrinsics into arm_neon.h (AArch64 only for now).
Add two new type modifiers to NeonEmitter to handle the new prototypes.
Define __ARM_FEATURE_FP16FML when +fp16fml is enabled and guard the
intrinsics with the macro in arm_neon.h.
Based on a patch by Gao Yiling.
Differential Revision: https://reviews.llvm.org/D53633
llvm-svn: 345344
Summary: Microsoft's C++ object model for ARM64 is the same as that for X86_64.
For example, small structs with non-trivial copy constructors or virtual
function tables are passed indirectly. Currently, they are passed in registers
when compiled with clang.
Reviewers: rnk, mstorsjo, TomTan, haripul, javed.absar
Reviewed By: rnk, mstorsjo
Subscribers: kristof.beyls, chrib, llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D49770
llvm-svn: 338076
Summary:
The getConstraintRegister method is used by semantic checking of
inline assembly statements in order to diagnose conflicts between
clobber list and input/output lists. Currently ARM and AArch64 don't
override getConstraintRegister, so conflicts between registers
assigned to variables in asm labels and clobber lists are not
diagnosed. Such conflicts can cause assertion failures in the back end
and even miscompilations.
This patch implements getConstraintRegister for ARM and AArch64
targets. Since these targets don't have single-register constraints,
the implementation is trivial and just returns the register specified
in an asm label (if any).
Reviewers: eli.friedman, javed.absar, thopre
Reviewed By: thopre
Subscribers: rengolin, eraman, rogfer01, myatsina, kristof.beyls, cfe-commits, chrib
Differential Revision: https://reviews.llvm.org/D45965
llvm-svn: 331164
When rejecting a march= or target-cpu command line parameter,
the message is quite lacking. This patch adds a note that prints
all possible values for the current target, if the target supports it.
This adds support for the ARM/AArch64 targets (more to come!).
Differential Revision: https://reviews.llvm.org/D42978
llvm-svn: 324673
This commit fixes a bug in IRGen where it generates completely broken
code for __fp16 vectors on X86. For example when the following code is
compiled:
half4 hv0, hv1, hv2; // these are vectors of __fp16.
void foo221() {
hv0 = hv1 + hv2;
}
clang generates the following IR, in which two i16 vectors are added:
@hv1 = common global <4 x i16> zeroinitializer, align 8
@hv2 = common global <4 x i16> zeroinitializer, align 8
@hv0 = common global <4 x i16> zeroinitializer, align 8
define void @foo221() {
%0 = load <4 x i16>, <4 x i16>* @hv1, align 8
%1 = load <4 x i16>, <4 x i16>* @hv2, align 8
%add = add <4 x i16> %0, %1
store <4 x i16> %add, <4 x i16>* @hv0, align 8
ret void
}
To fix the bug, this commit uses the code committed in r314056, which
modified clang to promote and truncate __fp16 vectors to and from float
vectors in the AST. It also fixes another IRGen bug where a short value
is assigned to an __fp16 variable without any integer-to-floating-point
conversion, as shown in the following example:
__fp16 a;
short b;
void foo1() {
a = b;
}
@b = common global i16 0, align 2
@a = common global i16 0, align 2
define void @foo1() #0 {
%0 = load i16, i16* @b, align 2
store i16 %0, i16* @a, align 2
ret void
}
rdar://problem/20625184
Differential Revision: https://reviews.llvm.org/D40112
llvm-svn: 320215
move _WIN64 and _WIN32 defines to lib/Basic/Targets/OSTargets.h
move WIN32, WIN64 and __MINGW64__ to addMinGWDefines
fixes __MINGW64__ not being defined for aarch64
adds WIN32 definition for x64
Reviewers: mstorsjo
Differential Revision: https://reviews.llvm.org/D40285
llvm-svn: 318755
This is similar to what's done on arm and x86_64, where
these calling conventions are silently ignored, as in
SVN r245076.
Differential Revision: https://reviews.llvm.org/D36105
llvm-svn: 310303
Targets.cpp is getting unwieldy, and even minor changes cause the entire thing
to cause recompilation for everyone. This patch bites the bullet and breaks
it up into a number of files.
I tended to keep function definitions in the class declaration unless it
caused additional includes to be necessary. In those cases, I pulled it
over into the .cpp file. Content is copy/paste for the most part,
besides includes/format/etc.
Differential Revision: https://reviews.llvm.org/D35701
llvm-svn: 308791