This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Add `pcm-info` to the `target module dump` subcommands.
This dump command shows information about clang .pcm files. This command
effectively runs `clang -module-file-info` and produces identical output.
The .pcm file format is tightly coupled to the clang version. The clang
embedded in lldb is not guaranteed to match the version of the clang executable
available on the local system.
There have been times when I've needed to view the details about a .pcm file
produced by lldb's embedded clang, but because the clang executable was a
slightly different version, the `-module-file-info` invocation failed. With
this command, users can inspect .pcm files generated by lldb too.
Differential Revision: https://reviews.llvm.org/D129456
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
When we recover from a crash in a module compilation thread, we need to
ensure any output streams owned by the ASTConsumer (e.g. in
RawPCHContainerGenerator) are deleted before we call clearOutputFiles().
This has the same theoretical issues with proxy streams that Duncan
discusses in the commit 2d13386783. In practice, this was observed
as a use-after-free crash on a downstream branch that uses such a proxy
stream in this code path. Add an assertion so it won't regress.
Differential Revision: https://reviews.llvm.org/D129220
rdar://96525032
HLSL vector types are ext_vector types, but they are also exposed via a
template syntax `vector<T, #>`. This is morally equavalent to the code:
```c++
template <typename T, int Size>
using vector = T __attribute__((ext_vector_type(Size)))
```
The problem is that templates aren't supported before HLSL 2021, and
type aliases still aren't supported in HLSL.
To resolve this (and other issues where HLSL can't represent its own
types), we rely on an external AST & Sema source being registered for
HLSL code.
This patch adds the HLSLExternalSemaSource and registers the vector
type alias.
Depends on D127802
Differential Revision: https://reviews.llvm.org/D128012
This is a preprocessor callback focused on the lexed file changing, without conflating effects of line number directives and other pragmas.
A client that only cares about what files the lexer processes, like dependency generation, can use this more straightforward
callback instead of `PPCallbacks::FileChanged()`. Clients that want the pragma directive effects as well can keep using `FileChanged()`.
A use case where `PPCallbacks::LexedFileChanged()` is particularly simpler to use than `FileChanged()` is in a situation
where a client wants to keep track of lexed file changes that include changes from/to the predefines buffer, where it becomes
unnecessary complicated trying to use `FileChanged()` while filtering out the pragma directives effects callbacks.
Also take the opportunity to provide information about the prior `FileID` the `Lexer` moved from, even when entering a new file.
Differential Revision: https://reviews.llvm.org/D128947
"Ascii" StringLiteral instances are actually narrow strings
that are UTF-8 encoded and do not have an encoding prefix.
(UTF8 StringLiteral are also UTF-8 encoded strings, but with
the u8 prefix.
To avoid possible confusion both with actuall ASCII strings,
and with future works extending the set of literal encodings
supported by clang, this rename StringLiteral::isAscii() to
isOrdinary(), matching C++ standard terminology.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D128762
Simplify debug info back to just "limited" or "full" by rolling the ctor
type homing fully into the "limited" debug info.
Also fix a bug I found along the way that was causing ctor type homing
to kick in even when something could be vtable homed (where vtable
homing is stronger/more effective than ctor homing) - fixing at the same
time as it keeps the tests (that were testing only "limited non ctor"
homing and now test ctor homing) passing.
Previously `#pragma STDC FENV_ACCESS ON` always set dynamic rounding
mode and strict exception handling. It is not correct in the presence
of other pragmas that also modify rounding mode and exception handling.
For example, the effect of previous pragma FENV_ROUND could be
cancelled, which is not conformant with the C standard. Also
`#pragma STDC FENV_ACCESS OFF` turned off only FEnvAccess flag, leaving
rounding mode and exception handling unchanged, which is incorrect in
general case.
Concrete rounding and exception mode depend on a combination of several
factors like various pragmas and command-line options. During the review
of this patch an idea was proposed that the semantic actions associated
with such pragmas should only set appropriate flags. Actual rounding
mode and exception handling should be calculated taking into account the
state of all relevant options. In such implementation the pragma
FENV_ACCESS should not override properties set by other pragmas but
should set them if such setting is absent.
To implement this approach the following main changes are made:
- Field `FPRoundingMode` is removed from `LangOptions`. Actually there
are no options that set it to arbitrary rounding mode, the choice was
only `dynamic` or `tonearest`. Instead, a new boolean flag
`RoundingMath` is added, with the same meaning as the corresponding
command-line option.
- Type `FPExceptionModeKind` now has possible value `FPE_Default`. It
does not represent any particular exception mode but indicates that
such mode was not set and default value should be used. It allows to
distinguish the case:
{
#pragma STDC FENV_ACCESS ON
...
}
where the pragma must set FPE_Strict, from the case:
{
#pragma clang fp exceptions(ignore)
#pragma STDC FENV_ACCESS ON
...
}
where exception mode should remain `FPE_Ignore`.
- Class `FPOptions` has now methods `getRoundingMode` and
`getExceptionMode`, which calculates the respective properties from
other specified FP properties.
- Class `LangOptions` has now methods `getDefaultRoundingMode` and
`getDefaultExceptionMode`, which calculates default modes from the
specified options and should be used instead of `getRoundingMode` and
`getFPExceptionMode` of the same class.
Differential Revision: https://reviews.llvm.org/D126364
`getCurrentFile` here causes an assertion on some condition.
`getCurrentFileOrBufferName` is preferrable instead.
llvm#55950
Differential Revision: https://reviews.llvm.org/D127509
It was previously reverted by 8406839d19.
---
This flag was introduced by
6818991d71
commit 6818991d71
Author: Ted Kremenek <kremenek@apple.com>
Date: Mon Dec 7 22:06:12 2009 +0000
Add clang-cc option '-analyzer-opt-analyze-nested-blocks' to treat
block literals as an entry point for analyzer checks.
The last reference was removed by this commit:
5c32dfc5fb
commit 5c32dfc5fb
Author: Anna Zaks <ganna@apple.com>
Date: Fri Dec 21 01:19:15 2012 +0000
[analyzer] Add blocks and ObjC messages to the call graph.
This paves the road for constructing a better function dependency graph.
If we analyze a function before the functions it calls and inlines,
there is more opportunity for optimization.
Note, we add call edges to the called methods that correspond to
function definitions (declarations with bodies).
Consequently, we should remove this dead flag.
However, this arises a couple of burning questions.
- Should the `cc1` frontend still accept this flag - to keep
tools/users passing this flag directly to `cc1` (which is unsupported,
unadvertised) working.
- If we should remain backward compatible, how long?
- How can we get rid of deprecated and obsolete flags at some point?
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126067
When I read the code I found it easier to reason about if `getUserMode`
is inlined. It might be a personal preference though.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127486
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
This patch introduces the new -fdriver-only flag which instructs Clang to only execute the driver logic without running individual jobs. In a way, this is very similar to -###, with the following differences:
* it doesn't automatically print all jobs,
* it doesn't avoid side effects (e.g. it will generate compilation database when -MJ is specified).
This flag will be useful in testing D121997.
Reviewed By: dexonsmith, egorzhdan
Differential Revision: https://reviews.llvm.org/D127408
This flag was introduced by
6818991d71
commit 6818991d71
Author: Ted Kremenek <kremenek@apple.com>
Date: Mon Dec 7 22:06:12 2009 +0000
Add clang-cc option '-analyzer-opt-analyze-nested-blocks' to treat
block literals as an entry point for analyzer checks.
The last reference was removed by this commit:
5c32dfc5fb
commit 5c32dfc5fb
Author: Anna Zaks <ganna@apple.com>
Date: Fri Dec 21 01:19:15 2012 +0000
[analyzer] Add blocks and ObjC messages to the call graph.
This paves the road for constructing a better function dependency graph.
If we analyze a function before the functions it calls and inlines,
there is more opportunity for optimization.
Note, we add call edges to the called methods that correspond to
function definitions (declarations with bodies).
Consequently, we should remove this dead flag.
However, this arises a couple of burning questions.
- Should the `cc1` frontend still accept this flag - to keep
tools/users passing this flag directly to `cc1` (which is unsupported,
unadvertised) working.
- If we should remain backward compatible, how long?
- How can we get rid of deprecated and obsolete flags at some point?
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126067
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
The `Builder.defineMacro("__cpp_multidimensional_subscript", "202110L");` line has
some `U+C2AD`s that shouldn't necessary here. So removed them.
Differential Revision: https://reviews.llvm.org/D127066
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
This reverts commit 3988bd1398.
Did not build on this bot:
https://lab.llvm.org/buildbot#builders/215/builds/6372
/usr/include/c++/9/bits/predefined_ops.h:177:11: error: no match for call to
‘(llvm::less_first) (std::pair<long unsigned int, llvm::bolt::BinaryBasicBlock*>&, const std::pair<long unsigned int, std::nullptr_t>&)’
177 | { return bool(_M_comp(*__it, __val)); }
One could reuse this functor instead of rolling out your own version.
There were a couple other cases where the code was similar, but not
quite the same, such as it might have an assertion in the lambda or other
constructs. Thus, I've not touched any of those, as it might change the
behavior in some way.
As per https://discourse.llvm.org/t/submitting-simple-nfc-patches/62640/3?u=steakhal
Chris Lattner
> LLVM intentionally has a “yes, you can apply common sense judgement to
> things” policy when it comes to code review. If you are doing mechanical
> patches (e.g. adopting less_first) that apply to the entire monorepo,
> then you don’t need everyone in the monorepo to sign off on it. Having
> some +1 validation from someone is useful, but you don’t need everyone
> whose code you touch to weigh in.
Differential Revision: https://reviews.llvm.org/D126068
This is a commit with the following changes:
* Remove `ExcludedPreprocessorDirectiveSkipMapping` and related functionality
Removes `ExcludedPreprocessorDirectiveSkipMapping`; its intended benefit for fast skipping of excluded directived blocks
will be superseded by a follow-up patch in the series that will use dependency scanning lexing for the same purpose.
* Refactor dependency scanning to produce pre-lexed preprocessor directive tokens, instead of minimized sources
Replaces the "source minimization" mechanism with a mechanism that produces lexed dependency directives tokens.
* Make the special lexing for dependency scanning a first-class feature of the `Preprocessor` and `Lexer`
This is bringing the following benefits:
* Full access to the preprocessor state during dependency scanning. E.g. a component can see what includes were taken and where they were located in the actual sources.
* Improved performance for dependency scanning. Measurements with a release+thin-LTO build shows ~ -11% reduction in wall time.
* Opportunity to use dependency scanning lexing to speed-up skipping of excluded conditional blocks during normal preprocessing (as follow-up, not part of this patch).
For normal preprocessing measurements show differences are below the noise level.
Since, after this change, we don't minimize sources and pass them in place of the real sources, `DependencyScanningFilesystem` is not technically necessary, but it has valuable performance benefits for caching file `stat`s along with the results of scanning the sources. So the setup of using the `DependencyScanningFilesystem` during a dependency scan remains.
Differential Revision: https://reviews.llvm.org/D125486
Differential Revision: https://reviews.llvm.org/D125487
Differential Revision: https://reviews.llvm.org/D125488
This is first of a series of patches for making the special lexing for dependency scanning a first-class feature of the `Preprocessor` and `Lexer`.
This patch only includes NFC renaming changes to make reviewing of the functionality changing parts easier.
Differential Revision: https://reviews.llvm.org/D125484
Since this didn't make it into the v14 release - anyone requesting the
v14 ABI shouldn't get this GCC-compatible change that isn't backwards
compatible with v14 Clang.
Differential Revision: https://reviews.llvm.org/D126334
When Clang generates the path prefix (i.e. the path of the directory
where the file is) when generating FILE, __builtin_FILE(), and
std::source_location, Clang uses the platform-specific path separator
character of the build environment where Clang _itself_ is built. This
leads to inconsistencies in Chrome builds where Clang running on
non-Windows environments uses the forward slash (/) path separator
while Clang running on Windows builds uses the backslash (\) path
separator. To fix this, we add a flag -ffile-reproducible (and its
inverse, -fno-file-reproducible) to have Clang use the target's
platform-specific file separator character.
Additionally, the existing flags -fmacro-prefix-map and
-ffile-prefix-map now both imply -ffile-reproducible. This can be
overriden by setting -fno-file-reproducible.
[0]: https://crbug.com/1310767
Differential revision: https://reviews.llvm.org/D122766
D87451 added -mignore-xcoff-visibility for AIX targets and made it the default (which mimicked the behaviour of the XL 16.1 compiler on AIX).
However, ignoring hidden visibility has unwanted side effects and some libraries depend on visibility to hide non-ABI facing entities from user headers and
reserve the right to change these implementation details based on this (https://libcxx.llvm.org/DesignDocs/VisibilityMacros.html). This forces us to use
internal linkage fallbacks for these cases on AIX and creates an unwanted divergence in implementations on the plaform.
For these reasons, it's preferable to not add -mignore-xcoff-visibility by default, which is what this patch does.
Reviewed By: DiggerLin
Differential Revision: https://reviews.llvm.org/D125141
This is generally a better default for tools other than the compiler, which
shouldn't assume a PCH file on disk is something they can consume.
Preserve the old behavior in places associated with libclang/c-index-test
(including ASTUnit) as there are tests relying on it and most important
consumers are out-of-tree. It's unclear whether the tests are specifically
trying to test this functionality, and what the downstream implications of
removing it are. Hopefully someone more familiar can clean this up in future.
Differential Revision: https://reviews.llvm.org/D125149
We know we're going to overwrite it anyway.
It'd be a bit of work to coordinate not generating it at all, but setting this
flag avoids generating ~10k of the 13k string.
Differential Revision: https://reviews.llvm.org/D125180
Compared to the old implementation:
* In C++, we only recurse into aggregate classes.
* Unnamed bit-fields are not printed.
* Constant evaluation is supported.
* Proper conversion is done when passing arguments through `...`.
* Additional arguments are supported and are injected prior to the
format string; this directly supports use with `fprintf`, for example.
* An arbitrary callable can be passed rather than only a function
pointer. In particular, in C++, a function template or overload set is
acceptable.
* All text generated by Clang is printed via `%s` rather than directly;
this avoids issues where Clang's pretty-printing output might itself
contain a `%` character.
* Fields of types that we don't know how to print are printed with a
`"*%p"` format and passed by address to the print function.
* No return value is produced.
Reviewed By: aaron.ballman, erichkeane, yihanaa
Differential Revision: https://reviews.llvm.org/D124221