This patch implements correct hostness based overloading resolution
in isBetterOverloadCandidate.
Based on hostness, if one candidate is emittable whereas the other
candidate is not emittable, the emittable candidate is better.
If both candidates are emittable, or neither is emittable based on hostness, then
other rules should be used to determine which is better. This is because
hostness based overloading resolution is mostly for determining
viability of a function. If two functions are both viable, other factors
should take precedence in preference.
If other rules cannot determine which is better, CUDA preference will be
used again to determine which is better.
However, correct hostness based overloading resolution
requires overloading resolution diagnostics to be deferred,
which is not on by default. The rationale is that deferring
overloading resolution diagnostics may hide overloading reslolutions
issues in header files.
An option -fgpu-exclude-wrong-side-overloads is added, which is off by
default.
When -fgpu-exclude-wrong-side-overloads is off, keep the original behavior,
that is, exclude wrong side overloads only if there are same side overloads.
This may result in incorrect overloading resolution when there are no
same side candates, but is sufficient for most CUDA/HIP applications.
When -fgpu-exclude-wrong-side-overloads is on, enable deferring
overloading resolution diagnostics and enable correct hostness
based overloading resolution, i.e., always exclude wrong side overloads.
Differential Revision: https://reviews.llvm.org/D80450
This allows us to use its value everywhere, rather than just clang. Some
other places, like opt and lld, will use its value soon.
Rename it internally to LLVM_ENABLE_NEW_PASS_MANAGER.
The #define for it is now in llvm-config.h.
The initial land accidentally set the value of
LLVM_ENABLE_NEW_PASS_MANAGER to the string
ENABLE_EXPERIMENTAL_NEW_PASS_MANAGER instead of its value.
Reviewed By: rnk, hans
Differential Revision: https://reviews.llvm.org/D92072
This allows us to use its value everywhere, rather than just clang. Some
other places, like opt and lld, will use its value soon.
The #define for it is now in llvm-config.h.
Reviewed By: rnk, hans
Differential Revision: https://reviews.llvm.org/D92072
This makes the options API composable, allows boolean flags to imply non-boolean values and makes the code more logical (IMO).
Differential Revision: https://reviews.llvm.org/D91861
This is the #2 of 2 changes that make remarks hotness threshold option
available in more tools. The changes also allow the threshold to sync with
hotness threshold from profile summary with special value 'auto'.
This change expands remarks hotness threshold option
-fdiagnostics-hotness-threshold in clang and *-remarks-hotness-threshold in
other tools to utilize hotness threshold from profile summary.
Remarks hotness filtering relies on several driver options. Table below lists
how different options are correlated and affect final remarks outputs:
| profile | hotness | threshold | remarks printed |
|---------|---------|-----------|-----------------|
| No | No | No | All |
| No | No | Yes | None |
| No | Yes | No | All |
| No | Yes | Yes | None |
| Yes | No | No | All |
| Yes | No | Yes | None |
| Yes | Yes | No | All |
| Yes | Yes | Yes | >=threshold |
In the presence of profile summary, it is often more desirable to directly use
the hotness threshold from profile summary. The new argument value 'auto'
indicates threshold will be synced with hotness threshold from profile summary
during compilation. The "auto" threshold relies on the availability of profile
summary. In case of missing such information, no remarks will be generated.
Differential Revision: https://reviews.llvm.org/D85808
This change introduces a new clang switch `-fpseudo-probe-for-profiling` to enable AutoFDO with pseudo instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
One implication from pseudo-probe instrumentation is that the profile is now sensitive to CFG changes. We perform the pseudo instrumentation very early in the pre-LTO pipeline, before any CFG transformation. This ensures that the CFG instrumented and annotated is stable and optimization-resilient.
The early instrumentation also allows the inliner to duplicate probes for inlined instances. When a probe along with the other instructions of a callee function are inlined into its caller function, the GUID of the callee function goes with the probe. This allows samples collected on inlined probes to be reported for the original callee function.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86502
Added support for the options mabi=vec-extabi and mabi=vec-default which are analogous to qvecnvol and qnovecnvol when using XL on AIX.
The extended Altivec ABI on AIX is enabled using mabi=vec-extabi in clang and vec-extabi in llc.
Reviewed By: Xiangling_L, DiggerLin
Differential Revision: https://reviews.llvm.org/D89684
Recently HIP toolchain made a change to use clang instead of opt/llc to do compilation
(https://reviews.llvm.org/D81861). The intention is to make HIP toolchain canonical like
other toolchains.
However, this change introduced an unintentional change regarding backend fp fuse
option, which caused regressions in some HIP applications.
Basically before the change, HIP toolchain used clang to generate bitcode, then use
opt/llc to optimize bitcode and generate ISA. As such, the amdgpu backend takes
the default fp fuse mode which is 'Standard'. This mode respect contract flag of
fmul/fadd instructions and do not fuse fmul/fadd instructions without contract flag.
However, after the change, HIP toolchain now use clang to generate IR, do optimization,
and generate ISA as one process. Now amdgpu backend fp fuse option is determined
by -ffp-contract option, which is 'fast' by default. And this -ffp-contract=fast language option
is translated to 'Fast' fp fuse option in backend. Suddenly backend starts to fuse fmul/fadd
instructions without contract flag.
This causes wrong result for some device library functions, e.g. tan(-1e20), which should
return 0.8446, now returns -0.933. What is worse is that since backend with 'Fast' fp fuse
option does not respect contract flag, there is no way to use #pragma clang fp contract
directive to enforce fp contract requirements.
This patch fixes the regression by introducing a new value 'fast-honor-pragmas' for -ffp-contract
and use it for HIP by default. 'fast-honor-pragmas' is equivalent to 'fast' in frontend but
let the backend to use 'Standard' fp fuse option. 'fast-honor-pragmas' is useful since 'Fast'
fp fuse option in backend does not honor contract flag, it is of little use to HIP
applications since all code with #pragma STDC FP_CONTRACT or any IR from a
source compiled with -ffp-contract=on is broken.
Differential Revision: https://reviews.llvm.org/D90174
The dependency mechanism for C has been implemented, and we have rolled out
this to all internal users, didn't see crashy issues, we consider it is stable
enough.
Differential Revision: https://reviews.llvm.org/D89046
- The new option, -arcmt-action, is a simple enum based option.
- The driver is modified to translate the existing -ccc-acmt-* options accordingly
Depends on D83298
Reviewed By: Bigcheese
Original patch by Daniel Grumberg.
Differential Revision: https://reviews.llvm.org/D83315
As with precompiled headers, it's useful for indexers to be able to
continue through compiler errors in dependent modules.
Resolves rdar://69816264
Reviewed By: akyrtzi
Differential Revision: https://reviews.llvm.org/D91580
Add an option -munsafe-fp-atomics for AMDGPU target.
When enabled, clang adds function attribute "amdgpu-unsafe-fp-atomics"
to any functions for amdgpu target. This allows amdgpu backend to use
unsafe fp atomic instructions in these functions.
Differential Revision: https://reviews.llvm.org/D91546
This enables automatically parsing and generating CC1 arguments for options where two flags control the same field, e.g. -fexperimental-new-pass-manager and -fno-experimental new pass manager.
Reviewed By: Bigcheese, dexonsmith
Original patch by Daniel Grumberg.
Differential Revision: https://reviews.llvm.org/D83071
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.
I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.
This reverts commit 7bdad08429,
and some of it's follow-ups, that don't stand on their own.
Merge existing marhsalling info kinds and add some primitives to
express flag options that contribute to a bitfield.
Depends on D82574
Original patch by Daniel Grumberg.
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D82860
As of D80952 we are disabling strict floating point on all hosts except
those that are explicitly listed as supported. Use of strict floating point
on other hosts requires use of the -fexperimental-strict-floating-point
flag. This is to avoid bugs like "https://bugs.llvm.org/show_bug.cgi?id=45329"
(which has an incorrect link in the previous review).
In the review for D80952 I was asked to mark the -fexperimental option as
a MarshallingInfoFlag. This patch does exactly that.
Differential Revision: https://reviews.llvm.org/D88987
This reverts commit 09248a5d25.
Some builds are broken. I suspect a `static constexpr` in a class missing a
definition out of class (required pre-c++17).
Merge existing marhsalling info kinds and add some primitives to
express flag options that contribute to a bitfield.
Depends on D82574
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D82860
This ports a number of OpenCL and fast-math flags for floating point
over to the new marshalling infrastructure.
As part of this, `Opt{In,Out}FFlag` were enhanced to allow other flags to
imply them, via `DefaultAnyOf<>`. For example:
```
defm signed_zeros : OptOutFFlag<"signed-zeros", ...,
"LangOpts->NoSignedZero",
DefaultAnyOf<[cl_no_signed_zeros, menable_unsafe_fp_math]>>;
```
defines `-fsigned-zeros` (`false`) and `-fno-signed-zeros` (`true`)
linked to the keypath `LangOpts->NoSignedZero`, defaulting to `false`,
but set to `true` implicitly if one of `-cl-no-signed-zeros` or
`-menable-unsafe-fp-math` is on.
Note that the initial patch was written Daniel Grumberg.
Differential Revision: https://reviews.llvm.org/D82756
The behavior is controlled by the `-fprebuilt-implicit-modules` option, and
allows searching for implicit modules in the prebuilt module cache paths.
The current command-line options for prebuilt modules do not allow to easily
maintain and use multiple versions of modules. Both the producer and users of
prebuilt modules are required to know the relationships between compilation
options and module file paths. Using a particular version of a prebuilt module
requires passing a particular option on the command line (e.g.
`-fmodule-file=[<name>=]<file>` or `-fprebuilt-module-path=<directory>`).
However the compiler already knows how to distinguish and automatically locate
implicit modules. Hence this proposal to introduce the
`-fprebuilt-implicit-modules` option. When set, it enables searching for
implicit modules in the prebuilt module paths (specified via
`-fprebuilt-module-path`). To not modify existing behavior, this search takes
place after the standard search for prebuilt modules. If not
Here is a workflow illustrating how both the producer and consumer of prebuilt
modules would need to know what versions of prebuilt modules are available and
where they are located.
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v1 <config 1 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v2 <config 2 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules_v3 <config 3 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules_v1 <config 1 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap <non-prebuilt config options>
With prebuilt implicit modules, the producer can generate prebuilt modules as
usual, all in the same output directory. The same mechanisms as for implicit
modules take care of incorporating hashes in the path to distinguish between
module versions.
Note that we do not specify the output module filename, so `-o` implicit modules are generated in the cache path `prebuilt_modules`.
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 1 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 2 options>
clang -cc1 -x c modulemap -fmodules -emit-module -fmodule-name=foo -fmodules-cache-path=prebuilt_modules <config 3 options>
The user can now simply enable prebuilt implicit modules and point to the
prebuilt modules cache. No need to "parse" command-line options to decide
what prebuilt modules (paths) to use.
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules -fprebuilt-implicit-modules <config 1 options>
clang -cc1 -x c use.c -fmodules fmodule-map-file=modulemap -fprebuilt-module-path=prebuilt_modules -fprebuilt-implicit-modules <non-prebuilt config options>
This is for example particularly useful in a use-case where compilation is
expensive, and the configurations expected to be used are predictable, but not
controlled by the producer of prebuilt modules. Modules for the set of
predictable configurations can be prebuilt, and using them does not require
"parsing" the configuration (command-line options).
Reviewed By: Bigcheese
Differential Revision: https://reviews.llvm.org/D68997
415f7ee883 had LIT test failures on any build where the clang executable
was not called "clang". I have adjusted the LIT CHECKs to remove the
binary name to fix this.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
Similar to -fprofile-generate=, add -fmemory-profile= which takes a
directory path. This is passed down to LLVM via a new module flag
metadata. LLVM in turn provides this name to the runtime via the new
__memprof_profile_filename variable.
Additionally, always pass a default filename (in $cwd if a directory
name is not specified vi the = form of the option). This is also
consistent with the behavior of the PGO instrumentation. Since the
memory profiles will generally be fairly large, it doesn't make sense to
dump them to stderr. Also, importantly, the memory profiles will
eventually be dumped in a compact binary format, which is another reason
why it does not make sense to send these to stderr by default.
Change the existing memprof tests to specify log_path=stderr when that
was being relied on.
Depends on D89086.
Differential Revision: https://reviews.llvm.org/D89087
When passing -lto-embed-bitcode=post-merge-pre-opt, we were getting
empty .llvmcmd sections. It turns out that is because the
CodeGenOptions::CmdArgs field was only populated when clang saw
-fembed-bitcode={all|marker}.
This patch always populates the CodeGenOptions::CmdArgs. The overhead
of carrying through in memory in all cases is likely negligible in
the grand schema of things, and it keeps the using code simple.
Differential Revision: https://reviews.llvm.org/D90366
* Make cc1 and cc1as --compress-debug-sections an alias for --compress-debug-sections=zlib
* Make -gz an alias for -gz=zlib
The new behavior is consistent with GCC when binutils>=2.26 is detected:
-gz is translated to --compress-debug-sections=zlib instead of --compress-debug-sections.
The name is unfortunate because it is similar to the driver option -ftest-coverage.
It turns out aside from one occurrence in a test, this option is not used.
Recently commit D78699 (commit 26cfb6e562), fixed clang's behavior with respect
to passing a union type through a register to correctly follow the ABI. However,
this is an ABI breaking change with earlier versions of the clang compiler, so we
should add an -fclang-abi-compat option to address this. Additionally, the PS4 ABI
requires the older behavior, so that is added as well.
This change adds a Ver11 value to the ClangABI enum that when it is set (or the
target is the PS4 triple), we skip the ABI fix introduced in D78699.
Differential Revision: https://reviews.llvm.org/D89747
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commits 683b308c07 and
8487bfd4e9.
We will go for a more restricted approach that does not give freedom to
everyone to change ABIs on whichever platform.
See the discussion on https://reviews.llvm.org/D85802.
This implements the flag proposed in RFC http://lists.llvm.org/pipermail/cfe-dev/2020-August/066437.html.
The goal is to add a way to override the default target C++ ABI through
a compiler flag. This makes it easier to test and transition between different
C++ ABIs through compile flags rather than build flags.
In this patch:
- Store `-fc++-abi=` in a LangOpt. This isn't stored in a
CodeGenOpt because there are instances outside of codegen where Clang
needs to know what the ABI is (particularly through
ASTContext::createCXXABI), and we should be able to override the
target default if the flag is provided at that point.
- Expose the existing ABIs in TargetCXXABI as values that can be passed
through this flag.
- Create a .def file for these ABIs to make it easier to check flag
values.
- Add an error for diagnosing bad ABI flag values.
Differential Revision: https://reviews.llvm.org/D85802
With this change, we're more or less ready to allow users outside
of the Static Analyzer to take advantage of path diagnostic consumers
for emitting their warnings in different formats.
Differential Revision: https://reviews.llvm.org/D67422
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
I've updated the patch D16586 to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D72932
Extended -cl-std/std flag with CL3.0 and added predefined version macros.
Patch by Anton Zabaznov (azabaznov)!
Tags: #clang
Differential Revision: https://reviews.llvm.org/D88300
SUMMARY:
In IBM compiler xlclang , there is an option -fnovisibility which suppresses visibility. For more details see: https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.xlcpp161.aix.doc/compiler_ref/opt_visibility.html.
We need to add the option -mignore-xcoff-visibility for compatibility with the IBM AIX OS (as the option is enabled by default in AIX). With this option llvm does not emit any visibility attribute to ASM or XCOFF object file.
The option only work on the AIX OS, for other non-AIX OS using the option will report an unsupported options error.
In AIX OS:
1.1 the option -mignore-xcoff-visibility is enabled by default , if there is not -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command .
1.2 if there is -fvisibility=* explicitly but not -mignore-xcoff-visibility explicitly in the clang command. it will generate visibility attributes.
1.3 if there are both -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command. The option "-mignore-xcoff-visibility" wins , it do not emit the visibility attribute.
The option -mignore-xcoff-visibility has no effect on visibility attribute when compile with -emit-llvm option to generated LLVM IR.
Reviewer: daltenty,Jason Liu
Differential Revision: https://reviews.llvm.org/D87451
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers: cfe-commits delcypher guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #Clang
Differential Revision: https://reviews.llvm.org/D88594
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is
used between two architectures with incompatible pointer sizes. This
ensures that the data mapping can be done correctly and solves an issue
in code generation generating the wrong size pointer. This patch adds a
new lit substitution, %omp_powerpc_triple that, if the system is 32-bit or
64-bit, sets the powerpc triple accordingly. This was required to fix
some OpenMP tests that automatically populated the target architecture.
Reviewers: jdoerfert
Subscribers: cfe-commits guansong sstefan1 yaxunl delcypher
Tags: OpenMP clang LLVM
Differential Revision: https://reviews.llvm.org/D88594
Failing tests on Arm due to the tests automatically populating
incomatible pointer width architectures. Reverting until the tests are
updated. Failing tests:
OpenMP/distribute_parallel_for_num_threads_codegen.cpp
OpenMP/distribute_parallel_for_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_num_threads_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_if_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_simd_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_simd_if_codegen.cpp
This reverts commit 9d2378b591.
Summary:
This patch adds an error to Clang that detects if OpenMP offloading is used
between two architectures with incompatible pointer sizes. This ensures that
the data mapping can be done correctly and solves an issue in code generation
generating the wrong size pointer.
Reviewer: jdoerfert
Subscribers:
Tags: #OpenMP #Clang
Differential Revision:
GCC 7 introduced -fprofile-update={atomic,prefer-atomic} (prefer-atomic is for
best efforts (some targets do not support atomics)) to increment counters
atomically, which is exactly what we have done with -fprofile-instr-generate
(D50867) and -fprofile-arcs (b5ef137c11).
This patch adds the option to clang to surface the internal options at driver level.
GCC 7 also turned on -fprofile-update=prefer-atomic when -pthread is specified,
but it has performance regression
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89307). So we don't follow suit.
Differential Revision: https://reviews.llvm.org/D87737
SYCL device compiler (similar to other SPMD compilers) assumes that
functions are convergent by default to avoid invalid transformations.
This attribute can be removed if compiler can prove that function does
not have convergent operations.
Reviewed By: Naghasan
Differential Revision: https://reviews.llvm.org/D87282
Add the ability to selectively instrument a subset of functions by dividing the functions into N logical groups and then selecting a group to cover. By selecting different groups over time you could cover the entire application incrementally with lower overhead than instrumenting the entire application at once.
Differential Revision: https://reviews.llvm.org/D87953
In CUDA/HIP a function may become implicit host device function by
pragma or constexpr. A host device function is checked in both
host and device compilation. However it may be emitted only
on host or device side, therefore the diagnostics should be
deferred until it is known to be emitted.
Currently clang is only able to defer certain diagnostics. This causes
false alarms and limits the usefulness of host device functions.
This patch lets clang defer all overloading resolution diagnostics for host device functions.
An option -fgpu-defer-diag is added to control this behavior. By default
it is off.
It is NFC for other languages.
Differential Revision: https://reviews.llvm.org/D84364
This patch adds a command line flag for the machine function splitter
(added in rG94faadaca4e1).
-fsplit-machine-functions
Split machine functions using profile information (x86 ELF). On
other targets an error is emitted. If profile information is not
provided a warning is emitted notifying the user that profile
information is required.
Differential Revision: https://reviews.llvm.org/D87047
This is consistent with the clang option added in
7ed8124d46, and the comments on the
runtime patch in D87120.
Differential Revision: https://reviews.llvm.org/D87622
After the recent discussion on cfe-dev 'Can indirect class parameters be
noalias?' [1], it seems like using using noalias is problematic for
current C++, but should be allowed for C-only code.
This patch introduces a new option to let the user indicate that it is
safe to mark indirect class parameters as noalias. Note that this also
applies to external callers, e.g. it might not be safe to use this flag
for C functions that are called by C++ functions.
In targets that allocate indirect arguments in the called function, this
enables more agressive optimizations with respect to memory operations
and brings a ~1% - 2% codesize reduction for some programs.
[1] : http://lists.llvm.org/pipermail/cfe-dev/2020-July/066353.html
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D85473
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
Patch D16586 was updated to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Differential Revision: https://reviews.llvm.org/D72932
The following people contributed to this patch:
- Diogo Sampaio
- Ties Stuij
This effectively disables r340386 on Darwin, and provides a command line flag
to opt into/out of this behaviour. This change is needed to compile certain
Apple headers correctly.
rdar://47688592
Differential revision: https://reviews.llvm.org/D86881
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Note that the runtime changes will be sent separately (hopefully this
week, need to add some tests).
This patch includes the LLVM pass to instrument memory accesses with
either inline sequences to increment the access count in the shadow
location, or alternatively to call into the runtime. It also changes
calls to memset/memcpy/memmove to the equivalent runtime version.
The pass is modeled on the address sanitizer pass.
The clang changes add the driver option to invoke the new pass, and to
link with the upcoming heap profiling runtime libraries.
Currently there is no attempt to optimize the instrumentation, e.g. to
aggregate updates to the same memory allocation. That will be
implemented as follow on work.
Differential Revision: https://reviews.llvm.org/D85948
This patch defaults to -mtune=generic unless -march is present. If -march is present we'll use the empty string unless its overridden by mtune. The back should use the target cpu if the tune-cpu isn't present.
It also adds AST serialization support to fix some tests that emit AST and parse it back. These tests diff the IR against the output from not going through AST. So if we don't serialize the tune CPU we fail the diff.
Differential Revision: https://reviews.llvm.org/D86488
This patch adds the -Xclang option
"-fexperimental-debug-variable-locations" and same LLVM CodeGen option,
to pick which variable location tracking solution to use.
Right now all the switch does is pick which LiveDebugValues
implementation to use, the normal VarLoc one or the instruction
referencing one in rGae6f78824031. Over time, the aim is to add fragments
of support in aid of the value-tracking RFC:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139440.html
also controlled by this command line switch. That will slowly move
variable locations to be defined by an instruction calculating a value,
and a DBG_INSTR_REF instruction referring to that value. Thus, this is
going to grow into a "use the new kind of variable locations" switch,
rather than just "use the new LiveDebugValues implementation".
Differential Revision: https://reviews.llvm.org/D83048
Building on the backend support from D85165. This parses the command line option in the driver, passes it on to CC1 and adds a function attribute.
-Still need to support tune on the target attribute.
-Need to use "generic" as the tuning by default. But need to change generic in the backend first.
-Need to set tune if march is specified and mtune isn't.
-May need to disable getHostCPUName's ability to guess CPU name from features when it doesn't have a family/model match for mtune=native. That's what gcc appears to do.
Differential Revision: https://reviews.llvm.org/D85384
With gcc 6.3.0, I hit the following compilation bug:
/home/yhs/work/llvm-project/clang/lib/Frontend/CompilerInvocation.cpp:
In function ‘bool ParseCodeGenArgs(clang::CodeGenOptions&, llvm::opt::ArgList&,
clang::InputKind, clang::DiagnosticsEngine&, const clang::TargetOptions&,
const clang::FrontendOptions&)’:
/home/yhs/work/llvm-project/clang/lib/Frontend/CompilerInvocation.cpp:780:12:
error: unused variable ‘A’ [-Werror=unused-variable]
if (Arg *A = Args.getLastArg(OPT_fuse_ctor_homing))
^
cc1plus: all warnings being treated as errors
The bug is introduced by Commit ae6523cd62 ("[DebugInfo] Add
-fuse-ctor-homing cc1 flag so we can turn on constructor homing only
if limited debug info is already on.")
This adds a cc1 flag to enable constructor homing but doesn't turn on debug
info if it wasn't enabled already (which is what using
-debug-info-kind=constructor does). This will be used for testing, and won't
be needed anymore once ctor homing is used as default / merged into =limited.
Bug to enable ctor homing: https://bugs.llvm.org/show_bug.cgi?id=46537
Differential Revision: https://reviews.llvm.org/D85799
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
This fixes an inconsistency: clang -c -gz -fno-integrated-as means SHF_COMPRESSED
while clang -c -gz -fintegrated-as means zlib-gnu.
---
Since July 15, 2015 (binutils-gdb commit
19a7fe52ae3d0971e67a134bcb1648899e21ae1c, included in 2.26), gas
--compress-debug-sections=zlib (gcc -gz) means zlib-gabi:
SHF_COMPRESSED. Before that GCC/binutils used zlib-gnu (.zdebug).
clang's -gz was introduced in rC306115 (Jun 2017) to indicate zlib-gnu. It
is 2020 now and it is not unreasonable to assume users of the new
feature to have new linkers (ld.bfd/gold >= 2.26, lld >= rLLD273661).
Change clang's default accordingly to improve standard conformance.
zlib-gnu becomes out of fashion and gets poorer toolchain support.
Its mangled names confuse tools and are more likely to cause problems.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D61689
This way should be the same like with a.pcm for modules.
An alternative way is 'clang++ -c empty.cpp -include-pch a.pch -o a.o
-Xclang -building-pch-with-obj', which is what clang-cl's /Yc does
internally.
Differential Revision: https://reviews.llvm.org/D83716
Summary:
This patch implements parsing support for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE, version 00bet5,
section 3.7.3) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT). For example:
#if __ARM_FEATURE_SVE_BITS==512
typedef svint32_t fixed_svint32_t __attribute__((arm_sve_vector_bits(512)));
#endif
Creates a type 'fixed_svint32_t' that is a fixed-length version of
'svint32_t' that is normal-sized (rather than sizeless) and contains
exactly 512 bits. Unlike 'svint32_t', this type can be used in places
such as structs and arrays where sizeless types can't.
Implemented in this patch is the following:
* Defined and tested attribute taking single argument.
* Checks the argument is an integer constant expression.
* Attribute can only be attached to a single SVE vector or predicate
type, excluding tuple types such as svint32x4_t.
* Added the `-msve-vector-bits=<bits>` flag. When specified the
`__ARM_FEATURE_SVE_BITS__EXPERIMENTAL` macro is defined.
* Added a language option to store the vector size specified by the
`-msve-vector-bits=<bits>` flag. This is used to validate `N ==
__ARM_FEATURE_SVE_BITS`, where N is the number of bits passed to the
attribute and `__ARM_FEATURE_SVE_BITS` is the feature macro defined under
the same flag.
The `__ARM_FEATURE_SVE_BITS` macro will be made non-experimental in the final
patch of the series.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 1/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, ctetreau, cameron.mcinally, rengolin, aaron.ballman
Reviewed By: sdesmalen, aaron.ballman
Differential Revision: https://reviews.llvm.org/D83550
Summary:
-fembed-bitcode options doesn't embed warning options since they are
useless to code generation. Make sure it handles the W_value group and
not embed those options in the output.
Reviewers: zixuw, arphaman
Reviewed By: zixuw
Subscribers: jkorous, dexonsmith, ributzka, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83813
We currently have strict floating point/constrained floating point enabled
for all targets. Constrained SDAG nodes get converted to the regular ones
before reaching the target layer. In theory this should be fine.
However, the changes are exposed to users through multiple clang options
already in use in the field, and the changes are _completely_ _untested_
on almost all of our targets. Bugs have already been found, like
"https://bugs.llvm.org/show_bug.cgi?id=45274".
This patch disables constrained floating point options in clang everywhere
except X86 and SystemZ. A warning will be printed when this happens.
Use the new -fexperimental-strict-floating-point flag to force allowing
strict floating point on hosts that aren't already marked as supporting
it (X86 and SystemZ).
Differential Revision: https://reviews.llvm.org/D80952
Summary:
Keep track of -fansi-escape-codes in DiagnosticOptions and move the
option to the new option parsing system.
Depends on D82860
Reviewers: Bigcheese
Subscribers: dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82874
`ObjCRuntime` and `CommentOpts.BlockCommandNames` are checked by
`ASTReader::checkLanguageOptions`, but are not part of the module
context hash. This can lead to errors when using implicit modules if
different TUs have different values for these options when using the
same module cache.
This was not hit very often due to the rare usage of
`-fblock-command-names=` and that `ObjCRuntime` is by default set by
the target triple, which is part of the existing context hash.
Making -g[no-]column-info opt out reduces the length of a typical CC1 command line.
Additionally, in a non-debug compile, we won't see -dwarf-column-info.
Summary:
Add an `-Wundef-prefix=<arg1>,<arg2>...` option, which is similar to `-Wundef`, but only give warnings for undefined macros with the given prefixes.
Reviewers: ributzka, steven_wu, cishida, bruno, arphaman, rsmith
Reviewed By: ributzka, arphaman
Subscribers: riccibruno, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80751
This patch was authored by Zixu Wang <zixu_wang@apple.com>
Summary:
Added support for dynamic memory allocation for globalized variables in
case if execution of target regions in parallel is required.
Reviewers: jdoerfert
Subscribers: jholewinski, yaxunl, guansong, sstefan1, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82324
Summary:
When -fopenmp option is specified then version 5.0 will be set as
default.
Reviewers: gregrodgers, jdoerfert, ABataev
Reviewed By: ABataev
Subscribers: pdhaliwal, yaxunl, guansong, sstefan1, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81098
This change includes the following:
- Add additional information in the relevant table-gen files to encode
the necessary information to automatically parse the argument into a
CompilerInvocation instance and to generate the appropriate command
line argument from a CompilerInvocation instance.
- Extend OptParserEmitter to emit the necessary macro tables as well as
constant tables to support parsing and generating command line
arguments for options that provide the necessary information.
- Port some options to use this new system for parsing and generating
command line arguments.
Differential Revision: https://reviews.llvm.org/D79796
Add -fpch-instantiate-templates which makes template instantiations be
performed already in the PCH instead of it being done in every single
file that uses the PCH (but every single file will still do it as well
in order to handle its own instantiations). I can see 20-30% build
time saved with the few tests I've tried.
The change may reorder compiler output and also generated code, but
should be generally safe and produce functionally identical code.
There are some rare cases that do not compile with it,
such as test/PCH/pch-instantiate-templates-forward-decl.cpp. If
template instantiation bailed out instead of reporting the error,
these instantiations could even be postponed, which would make them
work.
Enable this by default for clang-cl. MSVC creates PCHs by compiling
them using an empty .cpp file, which means templates are instantiated
while building the PCH and so the .h needs to be self-contained,
making test/PCH/pch-instantiate-templates-forward-decl.cpp to fail
with MSVC anyway. So the option being enabled for clang-cl matches this.
Differential Revision: https://reviews.llvm.org/D69585
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
When targetting CodeView, the goal is to store argv0 & cc1 cmd-line in the emitted .OBJ, in order to allow a reproducer from the .OBJ alone.
This patch is to simplify https://reviews.llvm.org/D80833
Summary:
Add a flag to omit the xray_fn_idx to cut size overhead and relocations
roughly in half at the cost of reduced performance for single function
patching. Minor additions to compiler-rt support per-function patching
without the index.
Reviewers: dberris, MaskRay, johnislarry
Subscribers: hiraditya, arphaman, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81995
Reland https://reviews.llvm.org/D76696
All known crashes have been fixed, another attemption.
We have rolled out this to all internal users for a while, didn't see
big issues, we consider it is stable enough.
Reviewed By: sammccall
Subscribers: rsmith, hubert.reinterpretcast, ebevhan, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78350
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
- Fix failing tests under new PM and ASan and MSan issues.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
This reverts commit 2e009dbcb3.
Reverting since there were some test failures on buildbots that used the
new pass manager. ASan and MSan are also finding some bugs in this that
I'll need to address.
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
Summary:
Add -ftrivial-auto-var-init-stop-after= to limit the number of times
stack variables are initialized when -ftrivial-auto-var-init= is used to
initialize stack variables to zero or a pattern. This flag can be used
to bisect uninitialized uses of a stack variable exposed by automatic
variable initialization, such as http://crrev.com/c/2020401.
Reviewers: jfb, vitalybuka, kcc, glider, rsmith, rjmccall, pcc, eugenis, vlad.tsyrklevich
Reviewed By: jfb
Subscribers: phosek, hubert.reinterpretcast, srhines, MaskRay, george.burgess.iv, dexonsmith, inglorion, gbiv, llozano, manojgupta, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77168
This patch adds clang options:
-fbasic-block-sections={all,<filename>,labels,none} and
-funique-basic-block-section-names.
LLVM Support for basic block sections is already enabled.
+ -fbasic-block-sections={all, <file>, labels, none} : Enables/Disables basic
block sections for all or a subset of basic blocks. "labels" only enables
basic block symbols.
+ -funique-basic-block-section-names: Enables unique section names for
basic block sections, disabled by default.
Differential Revision: https://reviews.llvm.org/D68049
Canonicalize on storing FP options in LangOptions instead of
redundantly in CodeGenOptions. Incorporate -ffast-math directly
into the values of those LangOptions rather than considering it
separately when building FPOptions. Build IR attributes from
those options rather than a mix of sources.
We should really simplify the driver/cc1 interaction here and have
the driver pass down options that cc1 directly honors. That can
happen in a follow-up, though.
Patch by Michele Scandale!
https://reviews.llvm.org/D80315
-fno-semantic-interposition is currently the CC1 default. (The opposite
disables some interprocedural optimizations.) However, it does not infer
dso_local: on most targets accesses to ExternalLinkage functions/variables
defined in the current module still need PLT/GOT.
This patch makes explicit -fno-semantic-interposition infer dso_local,
so that PLT/GOT can be eliminated if targets implement local aliases
for AsmPrinter::getSymbolPreferLocal (currently only x86).
Currently we check whether the module flag "SemanticInterposition" is 0.
If yes, infer dso_local. In the future, we can infer dso_local unless
"SemanticInterposition" is 1: frontends other than clang will also
benefit from the optimization if they don't bother setting the flag.
(There will be risks if they do want ELF interposition: they need to set
"SemanticInterposition" to 1.)
Summary:
Created AIXABIInfo and AIXTargetCodeGenInfo for AIX ABI.
Reviewed By: Xiangling_L, ZarkoCA
Differential Revision: https://reviews.llvm.org/D79035
rL82131 changed -O from -O1 to -O2, because -O1 was not different from
-O2 at that time.
GCC treats -O as -O1 and there is now work to make -O1 meaningful.
We can change -O back to -O1 again.
Reviewed By: echristo, dexonsmith, arphaman
Differential Revision: https://reviews.llvm.org/D79916
Debug entry values functionality provides debug information about
call sites and function parameters values at the call entry spot.
Condition for generating this type of information is
compiling with -g option and optimization level higher
than zero(-O0).
In ISEL phase, while lowering call instructions, collect info
about registers that forward arguments into following
function frame. We store such info into MachineFunction of
the caller function. This is used very late, when dumping DWARF
info about call site parameters.
The call site info is visible at MIR level, as callSites attribute
of MachineFunction. Also, when using unmodified parameter value
inside callee it could be described as DW_OP_entry_value expression.
To deal with callSites attribute, we should pass
-emit-call-site-info option to llc.
This patch enables functionality in clang frontend and adds
call site info generation support for MIPS targets
(mips, mipsel, mips64, mips64el).
Patch by Nikola Tesic
Differential Revision: https://reviews.llvm.org/D78105
Commit 73152a2ec2 fixed type checking for
blocks with qualified id parameters. But there are existing APIs in
Apple SDKs relying on the old type checking behavior. Specifically,
these are APIs using NSItemProviderCompletionHandler in
Foundation/NSItemProvider.h. To keep existing code working and to allow
developers to use affected APIs introduce a compatibility mode that
enables the previous and the fixed type checking. This mode is enabled
only on Darwin platforms.
Reviewed By: jyknight, ahatanak
Differential Revision: https://reviews.llvm.org/D79511
gcov 4.8 (r189778) moved the exit block from the last to the second.
The .gcda format is compatible with 4.7 but
* decoding libgcov 4.7 produced .gcda with gcov [4.7,8) can mistake the
exit block, emit bogus `%s:'%s' has arcs from exit block\n` warnings,
and print wrong `" returned %s` for branch statistics (-b).
* decoding libgcov 4.8 produced .gcda with gcov 4.7 has similar issues.
Also, rename "return block" to "exit block" because the latter is the
appropriate term.
SLH doesn't support asm goto and is unlikely to ever support it. Users of asm
goto need a way to choose whether to use asm goto or fallback to an SLH
compatible code path when SLH is enabled. This feature flag will give users
this ability.
Tested via unit test
Reviewed By: mattdr
Differential Revision: https://reviews.llvm.org/D79733
This bug was observed by Apple since their compiler processes LangOpts and CGOpts in a different order.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D79735
This patch adds a matrix type to Clang as described in the draft
specification in clang/docs/MatrixSupport.rst. It introduces a new option
-fenable-matrix, which can be used to enable the matrix support.
The patch adds new MatrixType and DependentSizedMatrixType types along
with the plumbing required. Loads of and stores to pointers to matrix
values are lowered to memory operations on 1-D IR arrays. After loading,
the loaded values are cast to a vector. This ensures matrix values use
the alignment of the element type, instead of LLVM's large vector
alignment.
The operators and builtins described in the draft spec will will be added in
follow-up patches.
Reviewers: martong, rsmith, Bigcheese, anemet, dexonsmith, rjmccall, aaron.ballman
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72281
RecoveryExprs are modeled as dependent type to prevent bogus diagnostics
and crashes in clang.
This patch allows to preseve the type for broken calls when the
RecoveryEprs have a known type, e.g. a broken non-overloaded call, a
overloaded call when the all candidates have the same return type, so
that more features (code completion still work on "take2args(x).^") still
work.
However, adding the type is risky, which may result in more clang code being
affected leading to new crashes and hurt diagnostic, and it requires large
effort to minimize the affect (update all sites in clang to handle errorDepend
case), so we add a new flag (off by default) to allow us to develop/test
them incrementally.
This patch also has some trivial fixes to suppress diagnostics (to prevent regressions).
Tested:
all existing tests are passed (when both "-frecovery-ast", "-frecovery-ast-type" flags are flipped on);
Reviewed By: sammccall
Subscribers: rsmith, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79160
Defaulting to -Xclang -coverage-version='407*' makes .gcno/.gcda
compatible with gcov [4.7,8)
In addition, delete clang::CodeGenOptionsBase::CoverageExtraChecksum and GCOVOptions::UseCfgChecksum.
We can infer the information from the version.
With this change, .gcda files produced by `clang --coverage a.o` linked executable can be read by gcov 4.7~7.
We don't need other -Xclang -coverage* options.
There may be a mismatching version warning, though.
(Note, GCC r173147 "split checksum into cfg checksum and line checksum"
made gcov 4.7 incompatible with previous versions.)
rL144865 incorrectly wrote function names for GCOV_TAG_FUNCTION
(this might be part of the reasons the header says
"We emit files in a corrupt version of GCOV's "gcda" file format").
rL176173 and rL177475 realized the problem and introduced -coverage-no-function-names-in-data
to work around the issue. (However, the description is wrong.
libgcov never writes function names, even before GCC 4.2).
In reality, the linker command line has to look like:
clang --coverage -Xclang -coverage-version='407*' -Xclang -coverage-cfg-checksum -Xclang -coverage-no-function-names-in-data
Failing to pass -coverage-no-function-names-in-data can make gcov 4.7~7
either produce wrong results (for one gcov-4.9 program, I see "No executable lines")
or segfault (gcov-7).
(gcov-8 uses an incompatible format.)
This patch deletes -coverage-no-function-names-in-data and the related
function names support from libclang_rt.profile
This is a standalone patch and this would help Propeller do a better job of code
layout as it can accurately attribute the profiles to the right internal linkage
function.
This also helps SampledFDO/AutoFDO correctly associate sampled profiles to the
right internal function. Currently, if there is more than one internal symbol
foo, their profiles are aggregated by SampledFDO.
This patch adds a new clang option, -funique-internal-funcnames, to generate
unique names for functions with internal linkage. This patch appends the md5
hash of the module name to the function symbol as a best effort to generate a
unique name for symbols with internal linkage.
Differential Revision: https://reviews.llvm.org/D73307
test cases
Add support for #pragma float_control
Reviewers: rjmccall, erichkeane, sepavloff
Differential Revision: https://reviews.llvm.org/D72841
This reverts commit 85dc033cac, and makes
corrections to the test cases that failed on buildbots.
Summary:
Add an option to enable on-demand parsing of needed ASTs during CTU analysis.
Two options are introduced. CTUOnDemandParsing enables the feature, and
CTUOnDemandParsingDatabase specifies the path to a compilation database, which
has all the necessary information to generate the ASTs.
Reviewers: martong, balazske, Szelethus, xazax.hun
Subscribers: ormris, mgorny, whisperity, xazax.hun, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, Charusso, steakhal, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75665
Summary:
Change the default ABI to be compatible with GCC. For 32-bit ELF
targets other than Linux, Clang now returns small structs in registers
r3/r4. This affects FreeBSD, NetBSD, OpenBSD. There is no change for
32-bit Linux, where Clang continues to return all structs in memory.
Add clang options -maix-struct-return (to return structs in memory) and
-msvr4-struct-return (to return structs in registers) to be compatible
with gcc. These options are only for PPC32; reject them on PPC64 and
other targets. The options are like -fpcc-struct-return and
-freg-struct-return for X86_32, and use similar code.
To actually return a struct in registers, coerce it to an integer of the
same size. LLVM may optimize the code to remove unnecessary accesses to
memory, and will return i32 in r3 or i64 in r3:r4.
Fixes PR#40736
Patch by George Koehler!
Reviewed By: jhibbits, nemanjai
Differential Revision: https://reviews.llvm.org/D73290
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Prior to this change the clang interface stubs format resembled
something ending with a symbol list like this:
Symbols:
a: { Type: Func }
This was problematic because we didn't actually want a map format and
also because we didn't like that an empty symbol list required
"Symbols: {}". That is to say without the empty {} llvm-ifs would crash
on an empty list.
With this new format it is much more clear which field is the symbol
name, and instead the [] that is used to express an empty symbol vector
is optional, ie:
Symbols:
- { Name: a, Type: Func }
or
Symbols: []
or
Symbols:
This further diverges the format from existing llvm-elftapi. This is a
good thing because although the format originally came from the same
place, they are not the same in any way.
Differential Revision: https://reviews.llvm.org/D76979
The driver enables -fdiagnostics-show-option by default, so flip the CC1
default to reduce the lengths of common CC1 command lines.
This change also makes ParseDiagnosticArgs() consistently enable
-fdiagnostics-show-option by default.
Summary:
CGProfilePass is run by default in certain new pass manager optimization pipeline. Assemblers other than llvm as (such as gnu as) cannot recognize the .cgprofile entries generated and emitted from this pass, causing build time error.
This patch adds new options in clang CodeGenOpts and PassBuilder options so that we can turn cgprofile off when not using integrated assembler.
Reviewers: Bigcheese, xur, george.burgess.iv, chandlerc, manojgupta
Reviewed By: manojgupta
Subscribers: manojgupta, void, hiraditya, dexonsmith, llvm-commits, tcwang, llozano
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62627
This reverts commit 0788acbccb.
This reverts commit c2d7a1f79cedfc9fcb518596aa839da4de0adb69: Revert "[clangd] Add test for FindTarget+RecoveryExpr (which already works). NFC"
It causes a crash on invalid code:
class X {
decltype(unresolved()) foo;
};
constexpr int s = sizeof(X);
Normally clang avoids creating expressions when it encounters semantic
errors, even if the parser knows which expression to produce.
This works well for the compiler. However, this is not ideal for
source-level tools that have to deal with broken code, e.g. clangd is
not able to provide navigation features even for names that compiler
knows how to resolve.
The new RecoveryExpr aims to capture the minimal set of information
useful for the tools that need to deal with incorrect code:
source range of the expression being dropped,
subexpressions of the expression.
We aim to make constructing RecoveryExprs as simple as possible to
ensure writing code to avoid dropping expressions is easy.
Producing RecoveryExprs can result in new code paths being taken in the
frontend. In particular, clang can produce some new diagnostics now and
we aim to suppress bogus ones based on Expr::containsErrors.
We deliberately produce RecoveryExprs only in the parser for now to
minimize the code affected by this patch. Producing RecoveryExprs in
Sema potentially allows to preserve more information (e.g. type of an
expression), but also results in more code being affected. E.g.
SFINAE checks will have to take presence of RecoveryExprs into account.
Initial implementation only works in C++ mode, as it relies on compiler
postponing diagnostics on dependent expressions. C and ObjC often do not
do this, so they require more work to make sure we do not produce too
many bogus diagnostics on the new expressions.
See documentation of RecoveryExpr for more details.
original patch from Ilya
This change is based on https://reviews.llvm.org/D61722
Reviewers: sammccall, rsmith
Reviewed By: sammccall, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69330
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
This flag is used by avr-gcc (starting with v10) to set the width of the
double type. The double type is by default interpreted as a 32-bit
floating point number in avr-gcc instead of a 64-bit floating point
number as is common on other architectures. Starting with GCC 10, a new
option has been added to control this behavior:
https://gcc.gnu.org/wiki/avr-gcc#Deviations_from_the_Standard
This commit keeps the default double at 32 bits but adds support for the
-mdouble flag (-mdouble=32 and -mdouble=64) to control this behavior.
Differential Revision: https://reviews.llvm.org/D76181
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
The -fsystem-module flag is used when explicitly building a module. It
forces the module to be treated as a system module. This is used when
converting an implicit build to an explicit build to match the
systemness the implicit build would have had for a given module.
Differential Revision: https://reviews.llvm.org/D75395
This reverts commit 0a9fc9233e.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
Signed-off-by: Alexey Bader <alexey.bader@intel.com>
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
This is trying to implement the functionality proposed in:
http://lists.llvm.org/pipermail/cfe-dev/2017-April/053417.html
An exception can throw, but no cleanup is going to happen.
A module compiled with exceptions on, can catch the exception throws
from module compiled with -fignore-exceptions.
The use cases for enabling this option are:
1. Performance analysis of EH instrumentation overhead
2. The ability to QA non EH functionality when EH functionality is not available.
3. User of EH enabled headers knows the calls won't throw in their program and
wants the performance gain from ignoring EH construct.
The implementation tried to accomplish that by removing any landing pad code
that might get generated.
Reviewed by: aaron.ballman
Differential Revision: https://reviews.llvm.org/D72644
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
The function attributes xray-skip-entry, xray-skip-exit, and
xray-ignore-loops were only being applied if a function had an
xray-instrument attribute, but they should apply if xray is enabled
globally too.
Differential Revision: https://reviews.llvm.org/D73842
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Summary:
Following the AAPCS, every store to a volatile bit-field requires to generate one load of that field, even if all the bits are going to be replaced.
This patch allows the user to opt-in in following such rule, whenever the a.
AAPCS Release 2019Q1.1 (https://static.docs.arm.com/ihi0042/g/aapcs32.pdf)
section 8.1 Data Types, page 35, paragraph: Volatile bit-fields – preserving number and width of container accesses
```
When a volatile bit-field is written, and its container does not overlap with any non-bit-field member, its
container must be read exactly once and written exactly once using the access width appropriate to the
type of the container. The two accesses are not atomic.
```
Reviewers: lebedev.ri, ostannard, jfb, eli.friedman
Reviewed By: jfb
Subscribers: rsmith, rjmccall, dexonsmith, kristof.beyls, jfb, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67399
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
This reverts commits f41ec709d9 and 5fedc2b410. On some buildbots, Clang :: Driver/crash-report.c is broken with:
```
Command Output (stderr):
--
/home/buildslave/ps4-buildslave1/clang-with-thin-lto-ubuntu/llvm-project/clang/test/Driver/crash-report.c:48:11: error: CHECK: expected string not found in input
// CHECK: Preprocessed source(s) and associated run script(s) are located at:
^
<stdin>:1:1: note: scanning from here
/home/buildslave/ps4-buildslave1/clang-with-thin-lto-ubuntu/llvm-project/clang/test/Driver/crash-report.c:50:1: error: unknown type name 'BAZ'
```
Example: http://lab.llvm.org:8011/builders/clang-with-thin-lto-ubuntu/builds/21321/steps/test-stage1-compiler/logs/stdio
Previously, when the above '#pragma clang __debug' were used, Driver::generateCompilationDiagnostics() wouldn't work as expected.
The 'clang -E' process created for diagnostics would crash, because it would reach again the intended crash in Pragma.cpp, PragmaDebugHandler::HandlePragma() while preprocessing.
When generating crash diagnostics, we now disable the intended crashing behavior with a new cc1 flag -disable-pragma-debug-crash.
Notes:
- #pragma clang __debug llvm_report_fatal isn't currently tested by crash-report.c, because it needs exit() to be handled differently in -fintegrated-cc1 mode. See https://reviews.llvm.org/D73742 for an upcoming fix.
- This is also needed to further validate that -MF is removed from the 'clang -E ' crash diagnostic cmd-line (currently not the case). See https://reviews.llvm.org/D74076 for an upcoming fix.
Differential Revision: https://reviews.llvm.org/D74070
Summary:
- The device compilation needs to have a consistent source code compared
to the corresponding host compilation. If macros based on the
host-specific target processor is not properly populated, the device
compilation may fail due to the inconsistent source after the
preprocessor. So far, only the host triple is used to build the
macros. If a detailed host CPU target or certain features are
specified, macros derived from them won't be populated properly, e.g.
`__SSE3__` won't be added unless `+sse3` feature is present. On
Windows compilation compatible with MSVC, that missing macros result
in that intrinsics are not included and cause device compilation
failure on the host-side source.
- This patch addresses this issue by introducing two `cc1` options,
i.e., `-aux-target-cpu` and `-aux-target-feature`. If a specific host
CPU target or certain features are specified, the compiler driver will
append them during the construction of the offline compilation
actions. Then, the toolchain in `cc1` phase will populate macros
accordingly.
- An internal option `--gpu-use-aux-triple-only` is added to fall back
the original behavior to help diagnosing potential issues from the new
behavior.
Reviewers: tra, yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73942
AMDGPU and x86 at least both have separate controls for whether
denormal results are flushed on output, and for whether denormals are
implicitly treated as 0 as an input. The current DAGCombiner use only
really cares about the input treatment of denormals.
Driver errors if -fomit-frame-pointer is used together with -pg.
useFramePointerForTargetByDefault() returns true if -pg is specified.
=>
(!OmitFP && useFramePointerForTargetByDefault(Args, Triple)) is true
=>
We cannot get FramePointerKind::None
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
With LLVM_APPEND_VC_REV=NO, Modules/merge-lifetime-extended-temporary.cpp
would fail if it ran before a0f50d7316 (which changed
the serialization format) and then after, for these reasons:
1. With LLVM_APPEND_VC_REV=NO, the module hash before and after the
change was the same.
2. Modules/merge-lifetime-extended-temporary.cpp is the only test
we have that uses -fmodule-cache-path=%t that
a) actually writes to the cache path
b) doesn't do `rm -rf %t` at the top of the test
So the old run would write a module file, and then the new run would
try to load it, but the serialized format changed.
Do several things to fix this:
1. Include clang::serialization::VERSION_MAJOR/VERSION_MINOR in
the module hash, so that when the AST format changes (...and
we remember to bump these), we use a different module cache dir.
2. Bump VERSION_MAJOR, since a0f50d7316 changed the
on-disk format in a way that a gch file written before that change
can't be read after that change.
3. Add `rm -rf %t` to all tests that pass -fmodule-cache-path=%t.
This is unnecessary from a correctness PoV after 1 and 2,
but makes it so that we don't amass many cache dirs over time.
(Arguably, it also makes it so that the test suite doesn't catch
when we change the serialization format but don't bump
clang::serialization::VERSION_MAJOR/VERSION_MINOR; oh well.)
Differential Revision: https://reviews.llvm.org/D73202
See
https://docs.google.com/document/d/1xMkTZMKx9llnMPgso0jrx3ankI4cv60xeZ0y4ksf4wc/preview
for background discussion.
This adds a warning, flags and pragmas to limit the number of
pre-processor tokens either at a certain point in a translation unit, or
overall.
The idea is that this would allow projects to limit the size of certain
widely included headers, or for translation units overall, as a way to
insert backstops for header bloat and prevent compile-time regressions.
Differential revision: https://reviews.llvm.org/D72703
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
Add a simple cache for constraint satisfaction results. Whether or not this simple caching
would be permitted in final C++2a is currently being discussed but it is required for
acceptable performance so we use it in the meantime, with the possibility of adding some
cache invalidation mechanisms later.
Differential Revision: https://reviews.llvm.org/D72552
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.
- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute
AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).
Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.
Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.
-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.
Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.
This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.
AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
XRay allows tuning by minimum function size, but also always instruments
functions with loops in them. If the minimum function size is set to a
large value the loop instrumention ends up causing most functions to be
instrumented anyway. This adds a new flag, -fxray-ignore-loops, to disable
the loop detection logic.
Differential Revision: https://reviews.llvm.org/D72873
The option will limit debug info by only emitting complete class
type information when its constructor is emitted.
This patch changes comparisons with LimitedDebugInfo to use the new
level instead.
Differential Revision: https://reviews.llvm.org/D72427
which is the default TLS model for non-PIC objects. This allows large/
many thread local variables or a compact/fast code in an executable.
Specification is same as that of GCC. For example, the code model
option precedes the TLS size option.
TLS access models other than local-exec are not changed. It means
supoort of the large code model is only in the local exec TLS model.
Patch By KAWASHIMA Takahiro (kawashima-fj <t-kawashima@fujitsu.com>)
Reviewers: dmgreen, mstorsjo, t.p.northover, peter.smith, ostannard
Reviewd By: peter.smith
Committed by: peter.smith
Differential Revision: https://reviews.llvm.org/D71688
In the backend, this feature is implemented with the function attribute
"patchable-function-entry". Both the attribute and XRay use
TargetOpcode::PATCHABLE_FUNCTION_ENTER, so the two features are
incompatible.
Reviewed By: ostannard, MaskRay
Differential Revision: https://reviews.llvm.org/D72222
getLastArgIntValue is a useful utility function to get command line argument as an integer.
Currently it is in Frontend so that it can only be used by clang -cc1. Move it to basic so
that it can also be used by clang driver.
Differential Revision: https://reviews.llvm.org/D71080
Recognize -mrecord-mcount from the command line and add a function attribute
"mrecord-mcount" when passed.
Only valid on SystemZ (when used with -mfentry).
Review: Ulrich Weigand
https://reviews.llvm.org/D71627
Our build system does not handle randomly named files created during
the build well. We'd prefer to write compilation output directly
without creating a temporary file. Function parameters already
existed to control this behavior but were not exposed all the way out
to the command line.
Patch by Zachary Henkel!
Differential revision: https://reviews.llvm.org/D70615
Recognize -mpacked-stack from the command line and add a function attribute
"mpacked-stack" when passed. This is needed for building the Linux kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D71441
Very few ELF platforms still use .ctors/.dtors now. Linux (glibc: 1999-07),
DragonFlyBSD, FreeBSD (2012-03) and Solaris have supported .init_array
for many years. Some architectures like AArch64/RISC-V default to
.init_array . GNU ld and gold can even convert .ctors to .init_array .
It makes more sense to flip the CC1 default, and only uses
-fno-use-init-array on platforms that don't support .init_array .
For example, OpenBSD did not support DT_INIT_ARRAY before Aug 2016
(86fa57a279)
I may miss some ELF platforms that still use .ctors, but their
maintainers can easily diagnose such problems.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71393
This is a follow up patch to use the OpenMP-IR-Builder, as discussed on
the mailing list ([1] and later) and at the US Dev Meeting'19.
[1] http://lists.flang-compiler.org/pipermail/flang-dev_lists.flang-compiler.org/2019-May/000197.html
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69922
Summary:
D30644 added OpenMP offloading to AArch64 targets, then D32035 changed the
frontend to throw an error when offloading is requested for an unsupported
target architecture. However the latter did not include AArch64 in the list
of supported architectures, causing the following unit tests to fail:
libomptarget :: api/omp_get_num_devices.c
libomptarget :: mapping/pr38704.c
libomptarget :: offloading/offloading_success.c
libomptarget :: offloading/offloading_success.cpp
Reviewers: pawosm01, gtbercea, jdoerfert, ABataev
Subscribers: kristof.beyls, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70804
Patch was reverted because https://bugs.llvm.org/show_bug.cgi?id=44048
The original patch is modified to set the strictfp IR attribute
explicitly in CodeGen instead of as a side effect of IRBuilder.
In the 2nd attempt to reapply there was a windows lit test fail, the
tests were fixed to use wildcard matching.
Differential Revision: https://reviews.llvm.org/D62731
Summary:
Removed the ```-fforce-experimental-new-constant-interpreter flag```, leaving
only the ```-fexperimental-new-constant-interpreter``` one. The interpreter
now always emits an error on an unsupported feature.
Allowing the interpreter to bail out would require a mapping from APValue to
interpreter memory, which will not be necessary in the final version. It is
more sensible to always emit an error if the interpreter fails.
Reviewers: jfb, Bigcheese, rsmith, dexonsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70071
GCC 8 implements -fmacro-prefix-map. Like -fdebug-prefix-map, it replaces a string prefix for the __FILE__ macro.
-ffile-prefix-map is the union of -fdebug-prefix-map and -fmacro-prefix-map
Reviewed By: rnk, Lekensteyn, maskray
Differential Revision: https://reviews.llvm.org/D49466
The CUDA builtin library is apparently compiled in C++ mode, so the
assumption of convergent needs to be made in a typically non-SPMD
language. The functions in the library should still be assumed
convergent. Currently they are not, which is potentially incorrect and
this happens to work after the library is linked.
Cleanup handling of the denormal-fp-math attribute. Consolidate places
checking the allowed names in one place.
This is in preparation for introducing FP type specific variants of
the denormal-fp-mode attribute. AMDGPU will switch to using this in
place of the current hacky use of subtarget features for the denormal
mode.
Introduce a new header for dealing with FP modes. The constrained
intrinsic classes define related enums that should also be moved into
this header for uses in other contexts.
The verifier could use a check to make sure the denorm-fp-mode
attribute is sane, but there currently isn't one.
Currently, DAGCombiner incorrectly asssumes non-IEEE behavior by
default in the one current user. Clang must be taught to start
emitting this attribute by default to avoid regressions when this is
switched to assume ieee behavior if the attribute isn't present.
and a follow-up NFC rearrangement as it's causing a crash on valid. Testcase is on the original review thread.
This reverts commits af57dbf12e and e6584b2b7b
Previously these were reported from the driver which blocked clang-scan-deps from getting the full set of dependencies from cc1 commands.
Also the default sanitizer blacklist that is added in driver was never reported as a dependency. I introduced -fsanitize-system-blacklist cc1 option to keep track of which blacklists were user-specified and which were added by driver and clang -MD now also reports system blacklists as dependencies.
Differential Revision: https://reviews.llvm.org/D69290
Add options to control floating point behavior: trapping and
exception behavior, rounding, and control of optimizations that affect
floating point calculations. More details in UsersManual.rst.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D62731
Recognize -mnop-mcount from the command line and add a function attribute
"mnop-mcount"="true" when passed.
When this option is used, a nop is added instead of a call to fentry. This
is used when building the Linux Kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D67763
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
This adds a flag to LLVM and clang to always generate a .debug_frame
section, even if other debug information is not being generated. In
situations where .eh_frame would normally be emitted, both .debug_frame
and .eh_frame will be used.
Differential Revision: https://reviews.llvm.org/D67216
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
Add this option to allow device side class type global variables
with non-trivial ctor/dtor. device side init/fini functions will
be emitted, which will be executed by HIP runtime when
the fat binary is loaded/unloaded.
This feature is to facilitate implementation of device side
sanitizer which requires global vars with non-trival ctors.
By default this option is disabled.
Differential Revision: https://reviews.llvm.org/D69268
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
llvm-svn: 374841
The goal is to have 100% fidelity in clang-scan-deps behavior when
--analyze is present in compilation command.
At the same time I don't want to break clang-tidy which expects
__static_analyzer__ macro defined as built-in.
I introduce new cc1 options (-setup-static-analyzer) that controls
the macro definition and is conditionally set in driver.
Differential Revision: https://reviews.llvm.org/D68093
llvm-svn: 374815
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
I noticed that compiling on Windows with -fno-ms-compatibility had the
side effect of defining __GNUC__, along with __GNUG__, __GXX_RTTI__, and
a number of other macros for GCC compatibility. This is undesirable and
causes Chromium to do things like mix __attribute__ and __declspec,
which doesn't work. We should have a positive language option to enable
GCC compatibility features so that we can experiment with
-fno-ms-compatibility on Windows. This change adds -fgnuc-version= to be
that option.
My issue aside, users have, for a long time, reported that __GNUC__
doesn't match their expectations in one way or another. We have
encouraged users to migrate code away from this macro, but new code
continues to be written assuming a GCC-only environment. There's really
nothing we can do to stop that. By adding this flag, we can allow them
to choose their own adventure with __GNUC__.
This overlaps a bit with the "GNUMode" language option from -std=gnu*.
The gnu language mode tends to enable non-conforming behaviors that we'd
rather not enable by default, but the we want to set things like
__GXX_RTTI__ by default, so I've kept these separate.
Helps address PR42817
Reviewed By: hans, nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D68055
llvm-svn: 374449
ARM and AArch64 SelectionDAG support for tacking parameter forwarding
register is implemented so we can allow clang invocations for those two
targets.
Beside that restrict debug entry value support to be emitted for
LimitedDebugInfo info and FullDebugInfo. Other types of debug info do
not have functions nor variables debug info.
Reviewers: aprantl, probinson, dstenb, vsk
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D67004
llvm-svn: 374153
Second Landing Attempt:
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 374061
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 373538
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 371834
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
This reinstates r371805, reverted in r371813, with an additional fix for
lldb.
llvm-svn: 371817
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
llvm-svn: 371805
Traditionally, clang-tidy uses the term check, and the analyzer uses checker,
but in the very early years, this wasn't the case, and code originating from the
early 2010's still incorrectly refer to checkers as checks.
This patch attempts to hunt down most of these, aiming to refer to checkers as
checkers, but preserve references to callback functions (like checkPreCall) as
checks.
Differential Revision: https://reviews.llvm.org/D67140
llvm-svn: 371760
Summary:
This adds `-fwasm-exceptions` (in similar fashion with
`-fdwarf-exceptions` or `-fsjlj-exceptions`) that turns on everything
with wasm exception handling from the frontend to the backend.
We currently have `-mexception-handling` in clang frontend, but this is
only about the architecture capability and does not turn on other
necessary options such as the exception model in the backend. (This can
be turned on with `llc -exception-model=wasm`, but llc is not invoked
separately as a command line tool, so this option has to be transferred
from clang.)
Turning on `-fwasm-exceptions` in clang also turns on
`-mexception-handling` if not specified, and will error out if
`-mno-exception-handling` is specified.
Reviewers: dschuff, tlively, sbc100
Subscribers: aprantl, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67208
llvm-svn: 371708
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
As far as I can tell, gcc passes 256/512 bit vectors __int128 in memory. And passes a vector of 1 _int128 in an xmm register. The backend considers <X x i128> as an illegal type and will scalarize any arguments with that type. So we need to coerce the argument types in the frontend to match to avoid the illegal type.
I'm restricting this to change to Linux and NetBSD based on the
how similar ABI changes have been handled in the past.
PS4, FreeBSD, and Darwin are unaffected. I've also added a
new -fclang-abi-compat version to restore the old behavior.
This issue was identified in PR42607. Though even with the types changed, we still seem to be doing some unnecessary stack realignment.
llvm-svn: 371169
Summary:
This significantly reduces the time required to run clangd tests, by
~10%.
Should also have an effect on other tests that run command-line parsing
multiple times inside a single invocation.
Reviewers: gribozavr, sammccall
Reviewed By: sammccall
Subscribers: kadircet, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67163
llvm-svn: 370908
Breaks BUILD_SHARED_LIBS build, introduces cycles in library dependency
graphs. (clangInterp depends on clangAST which depends on clangInterp)
This reverts r370839, which is an yet another recommit of D64146.
llvm-svn: 370874
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370839
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370636
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370584
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370531
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370476
I've been working on a new tool, llvm-ifs, for merging interface stub files
generated by clang and I've iterated on my derivative format of TBE to a newer
format. llvm-ifs will only support the new format, so I am going to drop the
older experimental interface stubs formats in this commit to make things
simpler.
Differential Revision: https://reviews.llvm.org/D66573
llvm-svn: 369719
After posting llvm-ifs on phabricator, I made some progress in hardening up how
I think the format for Interface Stubs should look. There are a number of
things I think the TBE format was missing (no endianness, no info about the
Object Format because it assumes ELF), so I have added those and broken off
from being as similar to the TBE schema. In a subsequent commit I can drop the
other formats.
An example of how The format will look is as follows:
--- !experimental-ifs-v1
IfsVersion: 1.0
Triple: x86_64-unknown-linux-gnu
ObjectFileFormat: ELF
Symbols:
_Z9nothiddenv: { Type: Func }
_Z10cmdVisiblev: { Type: Func }
...
The format is still marked experimental.
Differential Revision: https://reviews.llvm.org/D66446
llvm-svn: 369715
Summary:
This patch introduces a new `analyzer-config` configuration:
`-analyzer-config silence-checkers`
which could be used to silence the given checkers.
It accepts a semicolon separated list, packed into quotation marks, e.g:
`-analyzer-config silence-checkers="core.DivideZero;core.NullDereference"`
It could be used to "disable" core checkers, so they model the analysis as
before, just if some of them are too noisy it prevents to emit reports.
This patch also adds support for that new option to the scan-build.
Passing the option `-disable-checker core.DivideZero` to the scan-build
will be transferred to `-analyzer-config silence-checkers=core.DivideZero`.
Reviewed By: NoQ, Szelethus
Differential Revision: https://reviews.llvm.org/D66042
llvm-svn: 369078