It's more natural to use uint8_t * (std::byte needs C++17 and llvm has
too much uint8_t *) and most callers use uint8_t * instead of char *.
The functions are recently moved into `llvm::compression::zlib::`, so
downstream projects need to make adaption anyway.
The two first parameters of checkPreprocessorOptions are "PPOpts, ExistingPPOpts".
All other callers of the function pass them consistently.
This avoids confusion when working on the code.
Differential Revision: https://reviews.llvm.org/D129277
* Refactor compression namespaces across the project, making way for a possible
introduction of alternatives to zlib compression.
Changes are as follows:
* Relocate the `llvm::zlib` namespace to `llvm::compression::zlib`.
Reviewed By: MaskRay, leonardchan, phosek
Differential Revision: https://reviews.llvm.org/D128953
This is a recommit of b822efc740,
reverted in dc34d8df4c. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This patch gives basic parsing and semantic support for
"parallel masked taskloop simd" construct introduced in
OpenMP 5.1 (section 2.16.10)
Differential Revision: https://reviews.llvm.org/D128946
This reverts commit d4d47e574e.
This fixes the lldb crash that was observed by ensuring that our
friend-'template contains reference to' TreeTransform properly handles a
TemplateDecl.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
We'll need to add more cases for Objective-C entities and adding
everything to `err_module_odr_violation_mismatch_decl_diff` makes it
harder to work with over time.
Differential Revision: https://reviews.llvm.org/D128488
This patch gives basic parsing and semantic support for
"parallel masked taskloop" construct introduced in
OpenMP 5.1 (section 2.16.9)
Differential Revision: https://reviews.llvm.org/D128834
This reverts commit 2f20743952 because it
triggers an assertion when building an LLDB test program:
Assertion failed: (InstantiatingSpecializations.empty() && "failed to
clean up an InstantiatingTemplate?"), function ~Sema, file
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/clang/lib/Sema/Sema.cpp,
line 458.
More details in https://reviews.llvm.org/D126907.
It helps to avoid copy-paste mistakes and makes custom code paths more
noticeable.
Not funnelling all diagnostic through `ODRDiagDeclError` because plan to
break down `err_module_odr_violation_mismatch_decl_diff` into smaller
pieces instead of making it bigger and bigger.
Differential Revision: https://reviews.llvm.org/D128487
This patch gives basic parsing and semantic support for
"masked taskloop simd" construct introduced in OpenMP 5.1 (section 2.16.8)
Differential Revision: https://reviews.llvm.org/D128693
This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
Currently we do not in general merge attributes when importing decls from modules. This patch handles availability, but long term we need to properly handle all attributes.
I tried to use Sema::mergeDeclAttributes, but it caused test crashes as I don't think it expects to be called in this context. We really shouldn't have duplicate code for merging attributes long term, but for now this fixes availability. There's already a TODO for this in the declaration of ASTDeclReader::mergeInheritableAttributes.
Differential Revision: https://reviews.llvm.org/D127182
rdar://85820301
This patch adds the codegen support for `atomic compare capture` in clang.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D120290
This is a support for " #pragma omp atomic compare fail ". It has Parser & AST support for now.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D123235
Adds support for the reserved locator 'omp_all_memory' for use
in depend clauses with 'out' or 'inout' dependence-types.
Differential Revision: https://reviews.llvm.org/D125828
Number of statements in CompoundStmt is kept in a bit-field of the common
part of Stmt. The field has 24 bits for the number. To allocate a new
bit field (as attempted in https://reviews.llvm.org/D123952), this
number must be reduced, maximal number of statements in a compound
statement becomes smaller. It can result in compilation errors of some
programs.
With this change the number of statements is kept in a field of type
'unsigned int' rather than in bit-field. To make room in CompoundStmtBitfields
LBraceLoc is moved to fields of CompoundStmt.
Differential Revision: https://reviews.llvm.org/D125635
This is a 1.9% reduction in PCH size in my measurements.
In abbreviated records, VBR6 seems to be slightl better than VBR8 for locations
that may be delta-encoded (i.e. not the first)
Differential Revision: https://reviews.llvm.org/D125952
Much of the size of PCH/PCM files comes from stored SourceLocations.
These are encoded using (almost) their raw value, VBR-encoded. Absolute
SourceLocations can be relatively large numbers, so this commonly takes
20-30 bits per location.
We can reduce this by exploiting redundancy: many "nearby" SourceLocations are
stored differing only slightly and can be delta-encoded.
Randam-access loading of AST nodes constrains how long these sequences
can be, but we can do it at least within a node that always gets
deserialized as an atomic unit.
TypeLoc is implemented in this patch as it's a relatively small change
that shows most of the API.
This saves ~3.5% of PCH size, I have local changes applying this technique
further that save another 3%, I think it's possible to get to 10% total.
Differential Revision: https://reviews.llvm.org/D125403
This diff changes the serialization of the `ORIGINAL_PCH_DIR`
entry in module files to be serialized relative to the module's
`BaseDirectory`. This will allow for the module to be relocatable
across machines.
The path is restored relative to the module's BaseDirectory on
deserialization.
Reviewed By: urnathan
Differential Revision: https://reviews.llvm.org/D124946
This diff changes the serialization of the `SUBMODULE_TOPHEADER`
entry in module files to be serialized relative to the module's
`BaseDirectory`. This matches the behavior of the
`SUBMODULE_HEADER` entry and will allow for the module to be
relocatable across machines.
The path is restored relative to the module's `BaseDirectory` on
deserialization.
Reviewed By: urnathan
Differential Revision: https://reviews.llvm.org/D124938
This diff adds a new frontend flag `-fmodule-file-home-is-cwd`.
The behavior of this flag is similar to
`-fmodule-map-file-home-is-cwd` but does not require the module
map files to be modified to have inputs relative to the cwd.
Instead the output modules will have their `BaseDirectory` set
to the cwd and will try and resolve paths relative to that.
The motiviation for this change is to support relocatable pcm
files that are built on different machines with different paths
without having to alter module map files, which is sometimes not
possible as they are provided by 3rd parties.
Reviewed By: urnathan
Differential Revision: https://reviews.llvm.org/D124874
This includes a fix for the libc++ issue I ran across with friend
declarations not properly being identified as overloads.
This reverts commit 45c07db31c.
ASTWriter::associateDeclWithFile shows a lot in clangd perf profile due to O(n^2) behaviour in insertion of DeclIDs in SortedFileDeclIDs. Instead of doing that, this patch just appends it to the DeclIDs vector and sorts them at the end.
Reviewed By: akyrtzi
Differential Revision: https://reviews.llvm.org/D124840
This reverts commit a97899108e.
The patch caused some problems with the libc++ `__range_adaptor_closure`
that I haven't been able to figure out the cause of, so I am reverting
while I figure out whether this is a solvable problem/issue with the
CFE, or libc++ depending on an older 'incorrect' behavior.
This reverts commit 0c31da4838.
I've solved the issue with the PointerUnion by making the
`FunctionTemplateDecl` pointer be a NamedDecl, that could be a
`FunctionDecl` or `FunctionTemplateDecl` depending. This is enforced
with an assert.
This reverts commit 4b6c2cd647.
The patch caused numerous ARM 32 bit build failures, since we added a
5th item to the PointerUnion, and went over the 2-bits available in the
32 bit pointers.
As reported here: https://github.com/llvm/llvm-project/issues/44178
Concepts are not supposed to be instantiated until they are checked, so
this patch implements that and goes through significant amounts of work
to make sure we properly re-instantiate the concepts correctly.
Differential Revision: https://reviews.llvm.org/D119544
Emitting metadata for the same ivar multiple times can lead to
miscompilations. Objective-C runtime adds offsets to calculate ivar
position in memory and presence of duplicate offsets causes wrong final
position thus overwriting unrelated memory.
Such a situation is impossible with modules disabled as clang diagnoses
ivar redeclarations during sema checks after parsing
(`Sema::ActOnFields`). Fix the case with modules enabled by checking
during deserialization if ivar is already declared. We also support
a use case where the same category ends up in multiple modules. We
don't want to treat this case as ivar redeclaration and instead merge
corresponding ivars.
rdar://83468070
Differential Revision: https://reviews.llvm.org/D121177
When exprs are written unabbreviated:
- these were encoded as 5 x vbr6 = 30 bits
- now they fit exactly into a one-chunk vbr = 6 bits
clangd --check=clangd/AST.cpp reports ~1% reduction in PCH size
(42826720->42474460)
Differential Revision: https://reviews.llvm.org/D124250