Commit Graph

18 Commits

Author SHA1 Message Date
Nikita Popov 532dc62b90 [OpaquePtrs][Clang] Add -no-opaque-pointers to tests (NFC)
This adds -no-opaque-pointers to clang tests whose output will
change when opaque pointers are enabled by default. This is
intended to be part of the migration approach described in
https://discourse.llvm.org/t/enabling-opaque-pointers-by-default/61322/9.

The patch has been produced by replacing %clang_cc1 with
%clang_cc1 -no-opaque-pointers for tests that fail with opaque
pointers enabled. Worth noting that this doesn't cover all tests,
there's a remaining ~40 tests not using %clang_cc1 that will need
a followup change.

Differential Revision: https://reviews.llvm.org/D123115
2022-04-07 12:09:47 +02:00
hyeongyu kim 1b1c8d83d3 [Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.

Test updates are made as a separate patch: D108453

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D105169
2022-01-16 18:54:17 +09:00
hyeongyu kim fd9b099906 Revert "[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default"
This reverts commit aacfbb953e.

Revert "Fix lit test failures in CodeGenCoroutines"

This reverts commit 63fff0f5bf.
2021-11-09 02:15:55 +09:00
hyeongyukim aacfbb953e [Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.

Test updates are made as a separate patch: D108453

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D105169

[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)

This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:

(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.

(2) The remaining tests are updated manually.

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D108453

Resolve lit failures in clang after 8ca4b3e's land

Fix lit test failures in clang-ppc* and clang-x64-windows-msvc

Fix missing failures in clang-ppc64be* and retry fixing clang-x64-windows-msvc

Fix internal_clone(aarch64) inline assembly
2021-11-06 19:19:22 +09:00
Juneyoung Lee 89ad2822af Revert "[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default"
This reverts commit 7584ef766a.
2021-11-06 15:39:19 +09:00
Juneyoung Lee 7584ef766a [Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.

Test updates are made as a separate patch: D108453

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D105169
2021-11-06 15:36:42 +09:00
Chuanqi Xu ec117158a3 [Coroutines] [Frontend] Lookup in std namespace first
Now in libcxx and clang, all the coroutine components are defined in
std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.

This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace. So the existing codes wouldn't be break after update
compiler.

And in case the compiler found std::coroutine_traits and
std::experimental::coroutine_traits at the same time, it would emit an
error for it.

The support for looking up std::experimental::coroutine_traits would be
removed in Clang16.

Reviewed By: lxfind, Quuxplusone

Differential Revision: https://reviews.llvm.org/D108696
2021-11-04 11:53:47 +08:00
Juneyoung Lee f193bcc701 Revert D105169 due to the two-stage failure in ASAN
This reverts the following commits:
37ca7a795b
9aa6c72b92
705387c507
8ca4b3ef19
80dba72a66
2021-10-18 23:52:46 +09:00
Juneyoung Lee 8ca4b3ef19 [Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:

(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.

(2) The remaining tests are updated manually.

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D108453
2021-10-16 12:01:41 +09:00
Louis Dionne 79f8b5f0d0 Revert "[Coroutines] [Clang] Look up coroutine component in std namespace first"
This reverts commit 2fbd254aa4, which broke the libc++ CI. I'm reverting
to get things stable again until we've figured out a way forward.

Differential Revision: https://reviews.llvm.org/D108696
2021-09-03 16:01:09 -04:00
Chuanqi Xu 2fbd254aa4 [Coroutines] [Clang] Look up coroutine component in std namespace first
Summary: Now in libcxx and clang, all the coroutine components are
defined in std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.

But move the coroutine component into the std namespace may be an break
change. So I planned to split this change into two patch. One in clang
and other in libcxx.

This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace and emit a warning in this case. So the existing codes
wouldn't be break after update compiler.

Test Plan: check-clang, check-libcxx

Reviewed By: lxfind

Differential Revision: https://reviews.llvm.org/D108696
2021-09-03 10:22:55 +08:00
Chuanqi Xu 8a1727ba51 [Coroutines] Run coroutine passes by default
This patch make coroutine passes run by default in LLVM pipeline. Now
the clang and opt could handle IR inputs containing coroutine intrinsics
without special options.
It should be fine. On the one hand, the coroutine passes seems to be stable
since there are already many projects using coroutine feature.
On the other hand, the coroutine passes should do nothing for IR who doesn't
contain coroutine intrinsic.

Test Plan: check-llvm

Reviewed by: lxfind, aeubanks

Differential Revision: https://reviews.llvm.org/D105877
2021-07-15 14:33:40 +08:00
Roman Lebedev 16d0381841
Return "[CGCall] Annotate `this` argument with alignment"
The original change was reverted because it was discovered
that clang mishandles thunks, and they receive wrong
attributes for their this/return types - the ones for the function
they will call, not the ones they have.

While i have tried to fix this in https://reviews.llvm.org/D100388
that patch has been up and stuck for a month now,
with little signs of progress.

So while it will be good to solve this for real,
for now we can simply avoid introducing the bug,
by not annotating this/return for thunks.

This reverts commit 6270b3a1ea,
relanding 0aa0458f14.
2021-05-13 20:33:14 +03:00
Roman Lebedev 6270b3a1ea
Temporairly revert "[CGCall] Annotate `this` argument with alignment"
As per @jyknight, "It seems like there's a bug with vtable thunks getting the wrong information."
See https://reviews.llvm.org/D99790#2680857, https://godbolt.org/z/MxhYMe1q7

This reverts commit 0aa0458f14.
2021-04-10 10:43:16 +03:00
Roman Lebedev 0aa0458f14
[CGCall] Annotate `this` argument with alignment
As it is being noted in D99249, lack of alignment information on `this`
has been preventing LICM from happening.

For some time now, lack of alignment attribute does *not* imply
natural alignment, but an alignment of `1`.
Also, we used to treat dereferenceable as implying alignment,
but we no longer do, so it's a bugfix.

Differential Revision: https://reviews.llvm.org/D99790
2021-04-07 11:02:01 +03:00
Xun Li c7a39c833a [Coroutine][Clang] Force emit lifetime intrinsics for Coroutines
tl;dr Correct implementation of Corouintes requires having lifetime intrinsics available.

Coroutine functions are functions that can be suspended and resumed latter. To do so, data that need to stay alive after suspension must be put on the heap (i.e. the coroutine frame).
The optimizer is responsible for analyzing each AllocaInst and figure out whether it should be put on the stack or the frame.
In most cases, for data that we are unable to accurately analyze lifetime, we can just conservatively put them on the heap.
Unfortunately, there exists a few cases where certain data MUST be put on the stack, not on the heap. Without lifetime intrinsics, we are unable to correctly analyze those data's lifetime.

To dig into more details, there exists cases where at certain code points, the current coroutine frame may have already been destroyed. Hence no frame access would be allowed beyond that point.
The following is a common code pattern called "Symmetric Transfer" in coroutine:
```
auto tmp = await_suspend();
__builtin_coro_resume(tmp.address());
return;
```
In the above code example, `await_suspend()` returns a new coroutine handle, which we will obtain the address and then resume that coroutine. This essentially "transfered" from the current coroutine to a different coroutine.
During the call to `await_suspend()`, the current coroutine may be destroyed, which should be fine because we are not accessing any data afterwards.
However when LLVM is emitting IR for the above code, it needs to emit an AllocaInst for `tmp`. It will then call the `address` function on tmp. `address` function is a member function of coroutine, and there is no way for the LLVM optimizer to know that it does not capture the `tmp` pointer. So when the optimizer looks at it, it has to conservatively assume that `tmp` may escape and hence put it on the heap. Furthermore, in some cases `address` call would be inlined, which will generate a bunch of store/load instructions that move the `tmp` pointer around. Those stores will also make the compiler to think that `tmp` might escape.
To summarize, it's really difficult for the mid-end to figure out that the `tmp` data is short-lived.
I made some attempt in D98638, but it appears to be way too complex and is basically doing the same thing as inserting lifetime intrinsics in coroutines.

Also, for reference, we already force emitting lifetime intrinsics in O0 for AlwaysInliner: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Passes/PassBuilder.cpp#L1893

Differential Revision: https://reviews.llvm.org/D99227
2021-03-25 13:46:20 -07:00
CJ Johnson 69cd776e1e [CodeGen] Apply 'nonnull' and 'dereferenceable(N)' to 'this' pointer
arguments.

* Adds 'nonnull' and 'dereferenceable(N)' to 'this' pointer arguments
* Gates 'nonnull' on -f(no-)delete-null-pointer-checks
* Introduces this-nonnull.cpp and microsoft-abi-this-nullable.cpp tests to
  explicitly test the behavior of this change
* Refactors hundreds of over-constrained clang tests to permit these
  attributes, where needed
* Updates Clang12 patch notes mentioning this change

Reviewed-by: rsmith, jdoerfert

Differential Revision: https://reviews.llvm.org/D17993
2020-11-16 17:39:17 -08:00
Xun Li 19f0770923 [Coroutine][Sema] Cleanup temporaries as early as possible
The original bug was discovered in T75057860. Clang front-end emits an AST that looks like this for an co_await expression:
|- ExprWithCleanups
  |- -CoawaitExpr
    |- -MaterializeTemporaryExpr ... Awaiter
      ...
    |- -CXXMemberCallExpr ... .await_ready
      ...
    |- -CallExpr ... __builtin_coro_resume
      ...
    |- -CXXMemberCallExpr ... .await_resume
      ...

ExprWithCleanups is responsible for cleaning up (including calling dtors) for the temporaries generated in the wrapping expression).
In the above structure, the __builtin_coro_resume part (which corresponds to the code for the suspend case in the co_await with symmetric transfer), the pseudocode looks like this:
  __builtin_coro_resume(
   awaiter.await_suspend(
     from_address(
       __builtin_coro_frame())).address());

One of the temporaries that's generated as part of this code is the coroutine handle returned from awaiter.await_suspend() call. The call returns a handle  which is a prvalue (since it's a returned value on the fly). In order to call the address() method on it, it needs to be converted into an xvalue. Hence a materialized temp is created to hold it. This temp will need to be cleaned up eventually. Now, since all cleanups happen at the end of the entire co_await expression, which is after the <coro.suspend> suspension point, the compiler will think that such a temp needs to live across suspensions, and need to be put on the coroutine frame, even though it's only used temporarily just to call address() method.
Such a phenomena not only unnecessarily increases the frame size, but can lead to ASAN failures, if the coroutine was already destroyed as part of the await_suspend() call. This is because if the coroutine was already destroyed, the frame no longer exists, and one can not store anything into it. But if the temporary object is considered to need to live on the frame, it will be stored into the frame after await_suspend() returns.

A fix attempt was done in https://reviews.llvm.org/D87470. Unfortunately it is incorrect. The reason is that cleanups in Clang works more like linearly than nested. There is one current state indicating whether it needs cleanup, and an ExprWithCleanups resets that state. This means that an ExprWithCleanups must be capable of cleaning up all temporaries created  in the wrapping expression, otherwise there will be dangling temporaries cleaned up at the wrong place.
I eventually found a walk-around (https://reviews.llvm.org/D89066) that doesn't break any existing tests while fixing the issue. But it targets the final co_await only. If we ever have a co_await that's not on the final awaiter and the frame gets destroyed after suspend, we are in trouble. Hence we need a proper fix.

This patch is the proper fix. It does the folllowing things to fully resolve the issue:
1. The AST has to be generated in the order according to their nesting relationship. We should not generate AST out of order because then the code generator would incorrectly track the state of temporaries and when a cleanup is needed. So the code in buildCoawaitCalls is reorganized so that we will be generating the AST for each coawait member call in order along with their child AST.
2. await_ready() call is wrapped with an ExprWithCleanups so that temporaries in it gets cleaned up as early as possible to avoid living across suspension.
3. await_suspend() call is wrapped with an ExprWithCleanups if it's not a symmetric transfer. In the case of a symmetric transfer, in order to maintain the musttail call contract, the ExprWithCleanups is wraaped before the resume call.
4. In the end, we mark again that it needs a cleanup, so that the entire CoawaitExpr will be wrapped with a ExprWithCleanups which will clean up the Awaiter object associated with the await expression.

Differential Revision: https://reviews.llvm.org/D90990
2020-11-10 13:27:42 -08:00