When overload resolution fails, clang emits a note diagnostic for each
candidate. For OpenCL builtins this often leads to many repeated note
diagnostics with no new information. Stop emitting such notes.
Update a test that was relying on counting those notes to check how
many builtins are available for certain extension configurations.
Differential Revision: https://reviews.llvm.org/D127961
In C++ and C2x, we would avoid calling ImplicitlyDefineFunction at all,
but in OpenCL mode we would still call the function and have it produce
an error diagnostic. Instead, we now have a helper function to
determine when implicit function definitions are allowed and we use
that to determine whether to call ImplicitlyDefineFunction so that the
behavior is more consistent across language modes.
This changes the diagnostic behavior from telling the users that an
implicit function declaration is not allowed in OpenCL to reporting use
of an unknown identifier and going through typo correction, as done in
C++ and C2x.
A significant number of our tests in C accidentally use functions
without prototypes. This patch converts the function signatures to have
a prototype for the situations where the test is not specific to K&R C
declarations. e.g.,
void func();
becomes
void func(void);
Until now, subgroup builtins are available with `opencl-c.h` when at
least one of `cl_intel_subgroups`, `cl_khr_subgroups`, or
`__opencl_c_subgroups` is defined. With `-fdeclare-opencl-builtins`,
subgroup builtins are conditionalized on `cl_khr_subgroups` only.
Align `-fdeclare-opencl-builtins` to `opencl-c.h` by introducing the
internal `__opencl_subgroup_builtins` macro.
Differential Revision: https://reviews.llvm.org/D120254
Until now, overloads with a 64-bit atomic type argument were always
made available with `-fdeclare-opencl-builtins`. Ensure these
overloads are only available when both the `cl_khr_int64_base_atomics`
and `cl_khr_int64_extended_atomics` extensions have been enabled, as
required by the OpenCL specification.
Differential Revision: https://reviews.llvm.org/D119858
Add the atomic overloads for the `global` and `local` address spaces,
which are new in OpenCL 3.0. Ensure the preexisting `generic`
overloads are guarded by the generic address space feature macro.
Ensure a subset of the atomic builtins are guarded by the
`__opencl_c_atomic_order_seq_cst` and `__opencl_c_atomic_scope_device`
feature macros, and enable those macros for SPIR/SPIR-V targets in
`opencl-c-base.h`.
Also guard the `cl_ext_float_atomics` builtins with the atomic order
and scope feature macros.
Differential Revision: https://reviews.llvm.org/D119420
Currently, -fdeclare-opencl-builtins always adds the generic address
space overloads of e.g. the vload builtin functions in OpenCL 3.0
mode, even when the generic address space feature is disabled.
Guard the generic address space overloads by the
`__opencl_c_generic_address_space` feature instead of by OpenCL
version.
Guard the private, global, and local overloads using the internal
`__opencl_c_named_address_space_builtins` feature.
Differential Revision: https://reviews.llvm.org/D107769
Ensure any use of a `read_write` image is guarded behind the
`__opencl_c_read_write_images` feature macro.
Differential Revision: https://reviews.llvm.org/D117899
Use the "pure" attribute (or "readonly") for the vload, vload_half and
vloada_half builtins.
Includes test changes to SemaOpenCL/fdeclare-opencl-builtins.cl to avoid
triggering unused-result warnings.
Reviewed By: svenvh
Differential Revision: https://reviews.llvm.org/D110742
https://reviews.llvm.org/D62335 added some C++ for OpenCL specific
builtins to opencl-c.h, but these were not mirrored to the TableGen
builtin functions yet.
The TableGen builtins machinery does not have dedicated version
handling for C++ for OpenCL at the moment: all builtin versioning is
tied to `LangOpts.OpenCLVersion` (i.e., the OpenCL C version). As a
workaround, to add builtins that are only available in C++ for OpenCL,
we define a function extension guarded by the __cplusplus macro.
Differential Revision: https://reviews.llvm.org/D100935
Fixes PR50041.
Add functionality to assign extensions to types in OpenCLBuiltins.td
and use that information to filter candidates that should not be
exposed if a type is not available.
Differential Revision: https://reviews.llvm.org/D100209
The `int` and `long` versions of these builtins already provide the
necessary overloads for `intptr_t` and `uintptr_t` arguments, as
`ASTContext` defines `atomic_(u)intptr_t` in terms of the `int` or
`long` types.
Prior to this patch, calls to those builtins with particular argument
types resulted in call-is-ambiguous errors.
Differential Revision: https://reviews.llvm.org/D98520
Builtins that require multiple extensions, such as certain
`write_imagef` forms, were not exposed because of the Sema check not
splitting the extension string.
Differential Revision: https://reviews.llvm.org/D97930
Add the remaining missing builtin function declarations that have enum
or typedef argument or return types.
Differential Revision: https://reviews.llvm.org/D96860
Add enum and typedef argument support to `-fdeclare-opencl-builtins`,
which was the last major missing feature.
Adding the remaining missing builtins is left as future work.
Differential Revision: https://reviews.llvm.org/D96051
Add the builtin functions brought by the
cl_khr_subgroup_extended_types extension to
`-fdeclare-opencl-builtins`.
Differential Revision: https://reviews.llvm.org/D96279
Add the builtin functions brought by the
cl_khr_subgroup_non_uniform_arithmetic extension to
`-fdeclare-opencl-builtins`.
Differential Revision: https://reviews.llvm.org/D95951
Add the builtin functions brought by the cl_khr_subgroup_ballot
extension to `-fdeclare-opencl-builtins`.
Also add placeholder comments for the other Extended Subgroup
Functions from the OpenCL Extension Specification.
Add a comment clarifying the scope of the test.
Differential Revision: https://reviews.llvm.org/D95523
Until now, the `-fdeclare-opencl-builtins` option behaved differently
compared to inclusion of `opencl-c.h`: builtins that are part of an
extension were only available if the extension was enabled using the
corresponding pragma.
Builtins that belong to an extension are guarded using a preprocessor
macro (that is named after the extension) in `opencl-c.h`. Align the
behaviour of `-fdeclare-opencl-builtins` with this.
Co-authored-by: Anastasia Stulova
Differential Revision: https://reviews.llvm.org/D95616
Add the sub-group builtin functions from the OpenCL Extension
specification. This patch excludes the sub_group_barrier builtins
that take argument types not yet handled by the
`-fdeclare-opencl-builtins` machinery.
Co-authored-by: Pierre Gondois <pierre.gondois@arm.com>
The `-fdeclare-opencl-builtins` option was accepting saturated
conversions for non-integer types, which contradicts both the OpenCL
specification (v2.0 s6.2.3) and Clang's opencl-c.h file.
Provide a mechanism to attach OpenCL extension information to builtin
functions, so that their use can be restricted according to the
extension(s) the builtin is part of.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D71476
This patch adds the integer builtin functions from the OpenCL C
specification.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D69901
Support for C++ mode was accidentally lacking due to not checking the
OpenCLCPlusPlus LangOpts version.
Differential Revision: https://reviews.llvm.org/D69233
Add the -Wconversion -Werror options to check no unexpected conversion
is done.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D67714
llvm-svn: 372975
Add the image query builtin functions from the OpenCL C specification.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D67713
llvm-svn: 372833
Allow setting a MinVersion, stating from which OpenCL version a
builtin function is available, and a MaxVersion, stating from which
OpenCL version a builtin function should not be available anymore.
Guard some definitions of the "work-item" builtin functions according
to the OpenCL versions from which they are available.
Add the "vector data load and store" builtin functions (e.g.
vload/vstore), whose signatures differ before and after OpenCL 2.0 in
the pointer argument address spaces.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D63504
llvm-svn: 372321
Image types were previously available, but not working. This patch
adds image type handling.
Rename the image type definitions in the .td file to make them
consistent with other type names. Use abstract types to represent the
unqualified types. Instantiate access-qualified image types at the
point of use using, e.g. `ImageType<Image2d, "RO">`.
Add/update TableGen definitions for the read_image/write_image
builtin functions.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D63480
llvm-svn: 371046
Const, volatile, and pointer types were previously available, but not
working. This patch adds handling for OpenCL builtin functions.
Add TableGen definitions for some atomic and asynchronous builtins to
make use of the new functionality.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D63442
llvm-svn: 369373
Generic types are an abstraction of type sets. It mimics the way
functions are defined in the OpenCL specification. For example,
floatN can abstract all the vector sizes of the float type.
This allows to
* stick more closely to the specification, which uses generic types;
* factorize definitions of functions with numerous prototypes in the
tablegen file; and
* reduce the memory impact of functions with many overloads.
Patch by Pierre Gondois and Sven van Haastregt.
Differential Revision: https://reviews.llvm.org/D65456
llvm-svn: 369253
Using the -fdeclare-opencl-builtins option will require a way to
predefine types and macros such as `int4`, `CLK_GLOBAL_MEM_FENCE`,
etc. Move these out of opencl-c.h into opencl-c-base.h such that the
latter can be shared by -fdeclare-opencl-builtins and
-finclude-default-header.
This changes the behaviour of -finclude-default-header when
-fdeclare-opencl-builtins is specified: instead of including the full
header, it will include the header with only the base definitions.
Differential revision: https://reviews.llvm.org/D63256
llvm-svn: 363794
This patch adds a `-fdeclare-opencl-builtins` command line option to
the clang frontend. This enables clang to verify OpenCL C builtin
function declarations using a fast StringMatcher lookup, instead of
including the opencl-c.h file with the `-finclude-default-header`
option. This avoids the large parse time penalty of the header file.
This commit only adds the basic infrastructure and some of the OpenCL
builtins. It does not cover all builtins defined by the various OpenCL
specifications. As such, it is not a replacement for
`-finclude-default-header` yet.
RFC: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060041.html
Co-authored-by: Pierre Gondois
Co-authored-by: Joey Gouly
Co-authored-by: Sven van Haastregt
Differential Revision: https://reviews.llvm.org/D60763
llvm-svn: 362371