Commit Graph

7 Commits

Author SHA1 Message Date
Martin Storsjö a1568fa278 [lldb] Silence a GCC warning about missing returns after a fully covered switch. NFC. 2022-07-13 23:57:01 +03:00
Walter Erquinigo 4a843d9282 [trace][intel pt] Create a CPU change event and expose it in the dumper
Thanks to fredzhou@fb.com for coming up with this feature.

When tracing in per-cpu mode, we have information of in which cpu we are execution each instruction, which comes from the context switch trace. This diff makes this information available as a `cpu changed event`, which an additional accessor in the cursor `GetCPU()`. As cpu changes are very infrequent, any consumer should listen to cpu change events instead of querying the actual cpu of a trace item. Once a cpu change event is seen, the consumer can invoke GetCPU() to get that information. Also, it's possible to invoke GetCPU() on an arbitrary instruction item, which will return the last cpu seen. However, this call is O(logn) and should be used sparingly.

Manually tested with a sample program that starts on cpu 52, then goes to 18, and then goes back to 52.

Differential Revision: https://reviews.llvm.org/D129340
2022-07-13 12:26:11 -07:00
Walter Erquinigo a7d6c3effe [trace] Make events first class items in the trace cursor and rework errors
We want to include events with metadata, like context switches, and this
requires the API to handle events with payloads (e.g. information about
such context switches). Besides this, we want to support multiple
similar events between two consecutive instructions, like multiple
context switches. However, the current implementation is not good for this because
we are defining events as bitmask enums associated with specific
instructions. Thus, we need to decouple instructions from events and
make events actual items in the trace, just like instructions and
errors.

- Add accessors in the TraceCursor to know if an item is an event or not
- Modify from the TraceDumper all the way to DecodedThread to support
- Renamed the paused event to disabled.
- Improved the tsc handling logic. I was using an API for getting the tsc from libipt, but that was an overkill that should be used when not processing events manually, but as we are already processing events, we can more easily get the tscs.
event items. Fortunately this simplified many things
- As part of this refactor, I also fixed and long stating issue, which is that some non decoding errors were being inserted in the decoded thread. I changed this so that TraceIntelPT::Decode returns an error if the decoder couldn't be set up proplerly. Then, errors within a trace are actual anomalies found in between instrutions.

All test pass

Differential Revision: https://reviews.llvm.org/D128576
2022-06-29 09:19:51 -07:00
Walter Erquinigo f91d82816f [trace] Improve the TraceCursor iteration API
The current way ot traversing the cursor is a bit uncommon and it can't handle empty traces, in fact, its invariant is that it shold always point to a valid item. This diff simplifies the cursor API and allows it to point to invalid items, thus being able to handle empty traces or to know it ran out of data.

- Removed all the granularity functionalities, because we are not actually making use of that. We can bring them back when they are actually needed.
- change the looping logic to the following:

```
  for (; cursor->HasValue(); cursor->Next()) {
     if (cursor->IsError()) {
       .. do something for error
       continue;
     }
     .. do something for instruction
  }

```

- added a HasValue method that can be used to identify if the cursor ran out of data, the trace is empty, or the user tried to move to an invalid position via SetId() or Seek()
- made several simplifications to severals parts of the code.

Differential Revision: https://reviews.llvm.org/D128543
2022-06-28 16:50:12 -07:00
Walter Erquinigo 059f39d2f4 [trace][intel pt] Support events
A trace might contain events traced during the target's execution. For
example, a thread might be paused for some period of time due to context
switches or breakpoints, which actually force a context switch. Not only
that, a trace might be paused because the CPU decides to trace only a
specific part of the target, like the address filtering provided by
intel pt, which will cause pause events. Besides this case, other kinds
of events might exist.

This patch adds the method `TraceCursor::GetEvents()`` that returns the
list of events that happened right before the instruction being pointed
at by the cursor. Some refactors were done to make this change simpler.

Besides this new API, the instruction dumper now supports the -e flag
which shows pause events, like in the following example, where pauses
happened due to breakpoints.

```
thread #1: tid = 2717361
  a.out`main + 20 at main.cpp:27:20
    0: 0x00000000004023d9    leaq   -0x1200(%rbp), %rax
  [paused]
    1: 0x00000000004023e0    movq   %rax, %rdi
  [paused]
    2: 0x00000000004023e3    callq  0x403a62                  ; std::vector<int, std::allocator<int> >::vector at stl_vector.h:391:7
  a.out`std::vector<int, std::allocator<int> >::vector() at stl_vector.h:391:7
    3: 0x0000000000403a62    pushq  %rbp
    4: 0x0000000000403a63    movq   %rsp, %rbp
```

The `dump info` command has also been updated and now it shows the
number of instructions that have associated events.

Differential Revision: https://reviews.llvm.org/D123982
2022-04-25 19:01:23 -07:00
Walter Erquinigo b0aa70761b [trace][intel pt] Implement the Intel PT cursor
D104422 added the interface for TraceCursor, which is the main way to traverse instructions in a trace. This diff implements the corresponding cursor class for Intel PT and deletes the now obsolete code.

Besides that, the logic for the "thread trace dump instructions" was adapted to use this cursor (pretty much I ended up moving code from Trace.cpp to TraceCursor.cpp). The command by default traverses the instructions backwards, and if the user passes --forwards, then it's not forwards. More information about that is in the Options.td file.

Regarding the Intel PT cursor. All Intel PT cursors for the same thread share the same DecodedThread instance. I'm not yet implementing lazy decoding because we don't need it. That'll be for later. For the time being, the entire thread trace is decoded when the first cursor for that thread is requested.

Differential Revision: https://reviews.llvm.org/D105531
2021-07-16 16:47:43 -07:00
Walter Erquinigo 2aa1dd1c66 [trace] Add a TraceCursor class
As a follow up of D103588, I'm reinitiating the discussion with a new proposal for traversing instructions in a trace which uses the feedback gotten in that diff.

See the embedded documentation in TraceCursor for more information. The idea is to offer an OOP way to traverse instructions exposing a minimal interface that makes no assumptions on:

- the number of instructions in the trace (i.e. having indices for instructions might be impractical for gigantic intel-pt traces, as it would require to decode the entire trace). This renders the use of indices to point to instructions impractical. Traces are big and expensive, and the consumer should try to do look linear lookups (forwards and/or backwards) and avoid random accesses (the API could be extended though, but for now I want to dicard that funcionality and leave the API extensible if needed).
- the way the instructions are represented internally by each Trace plug-in. They could be mmap'ed from a file, exist in plain vector or generated on the fly as the user requests the data.
- the actual data structure used internally for each plug-in. Ideas like having a struct TraceInstruction have been discarded because that would make the plug-in follow a certain data type, which might be costly. Instead, the user can ask the cursor for each independent property of the instruction it's pointing at.

The way to get a cursor is to ask Trace.h for the end or being cursor or a thread's trace.

There are some benefits of this approach:
- there's little cost to create a cursor, and this allows for lazily decoding a trace as the user requests data.
- each trace plug-in could decide how to cache the instructions it generates. For example, if a trace is small, it might decide to keep everything in memory, or if the trace is massive, it might decide to keep around the last thousands of instructions to speed up local searches.
- a cursor can outlive a stop point, which makes trace comparison for live processes feasible. An application of this is to compare profiling data of two runs of the same function, which should be doable with intel pt.

Differential Revision: https://reviews.llvm.org/D104422
2021-06-23 22:28:01 -07:00