The request is mentioned on D129053. I feel that having this functionality is
mildly useful (not strong).
* Rename .ctors to .init_array and change sh_type to SHT_INIT_ARRAY (GNU objcopy
detects the special name but we don't).
* Craft tests for a new SHT_LLVM_* extension
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D129337
sanitize_none was never actually committed, and should be removed.
no_sanitize_memtag is to be removed in D128950.
sanitize_memtag is new in D128950.
Also update the comments on other no_sanitize_* to indicate that they're
impacted by the sanitizer ignorelist and the global-disable attribute.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D129410
It is illegal to merge two `llvm.coro.save` calls unless their
`llvm.coro.suspend` users are also merged. Marks it "nomerge" for
the moment.
This reverts D129025.
Alternative to D129025, which affects other token type users like WinEH.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D129530
Users upgrading to PHP 8.1 might start observing failures with `arc`.
Commit @ychen's suggestions as a patch in tree that can be applied since
arcanist is no longer accepting patches.
Also, remove the suggestion to apply an external patch updating CA
certs. It seems that this was fixed in upstream arcanist before they
stopped accepting patches. Compare
e3659d43d8
vs
13d3a3c3b1
Link: https://secure.phabricator.com/book/phabcontrib/article/contributing_code/
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D129232
* GNU objcopy supports --set-section-flags src=... --rename-section src=tst and --set-section-flags runs first.
* GNU objcopy processes --update-section before --rename-section.
To match the two behaviors, postpone --rename-section and allow its use together
with --set-section-flags.
As a side effect, --rename-section=.foo1=.foo2 --add-section=.foo1=/dev/null
leads to .foo2 while GNU objcopy surprisingly produces .foo1 (so
--set-section-flags --add-section --rename-section do not form a total order).
I think the deviation is fine as a total order makes more sense.
Rename set-section-flags-and-rename.test to
set-section-attr-and-rename.test and additionally test --set-section-alignment
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D129336
* Remove crc32 from zlib compression namespace, people should use the `llvm::crc32` instead.
Reviewed By: MaskRay, leonardchan
Differential Revision: https://reviews.llvm.org/D128754
* Refactor compression namespaces across the project, making way for a possible
introduction of alternatives to zlib compression.
Changes are as follows:
* Relocate the `llvm::zlib` namespace to `llvm::compression::zlib`.
Reviewed By: MaskRay, leonardchan, phosek
Differential Revision: https://reviews.llvm.org/D128953
SelectionDAG has a target hook, getExtendForAtomicOps, which it uses
in the computeKnownBits implementation for ATOMIC_LOAD. This is pretty
ugly (as is having a separate load opcode for atomics), so instead
allow making use of atomic zextload. Enable this for AArch64 since the
DAG path defaults in to the zext behavior.
The tablegen changes are pretty ugly, but partially helps migrate
SelectionDAG from using ISD::ATOMIC_LOAD to regular ISD::LOAD with
atomic memory operands. For now the DAG emitter will emit matchers for
patterns which the DAG will not produce.
I'm still a bit confused by the intent of the isLoad/isStore/isAtomic
bits. The DAG implementation rejects trying to use any of these in
combination. For now I've opted to make the isLoad checks also check
isAtomic, although I think having isLoad and isAtomic set on these
makes most sense.
For code contribution, GettingStarted.rst duplicates information in Contributing.rst.
The dedicated Contributing.rst is a better place for code contribution, so move
the content there.
Notes:
* D41665 added `Contributing.rst`
* D110976 mentioned `git cherry-pick e3659d43d8911e91739f3b0c5935598bceb859aa` workaround
Reviewed By: cjdb, fhahn, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D129255
This patchs adds a new metadata kind `exclude` which implies that the
global variable should be given the necessary flags during code
generation to not be included in the final executable. This is done
using the ``SHF_EXCLUDE`` flag on ELF for example. This should make it
easier to specify this flag on a variable without needing to explicitly
check the section name in the target backend.
Depends on D129053 D129052
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129151
Currently we use the `.llvm.offloading` section to store device-side
objects inside the host, creating a fat binary. The contents of these
sections is currently determined by the name of the section while it
should ideally be determined by its type. This patch adds the new
`SHT_LLVM_OFFLOADING` section type to the ELF section types. Which
should make it easier to identify this specific data format.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D129052
Currently we use the `embedBufferInModule` function to store binary
strings containing device offloading data inside the host object to
create a fatbinary. In the case of LTO, we need to extract this object
from the LLVM-IR. This patch adds a metadata node for the embedded
objects containing the embedded pointers and the sections they were
stored at. This should create a cleaner interface for identifying these
values.
In the future it may be worthwhile to also encode an `ID` in the
metadata corresponding to the object's special section type if relevant.
This would allow us to extract the data from an object file and LLVM-IR
using the same ID.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129033
Not deleting the loose instruction with metadata associated to it causes
an assertion when the LLVMContext is destroyed. This was previously
hidden by the fact that llvm-c-test does not call LLVMShutdown. The
planned removal of ManagedStatic exposed this issue.
Differential Revision: https://reviews.llvm.org/D129114
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
Add support for the RDPRU instruction on Zen2 processors.
User-facing features:
- Clang option -m[no-]rdpru to enable/disable the feature
- Support is implicit for znver2/znver3 processors
- Preprocessor symbol __RDPRU__ to indicate support
- Header rdpruintrin.h to define intrinsics
- "rdpru" mnemonic supported for assembler code
Internal features:
- Clang builtin __builtin_ia32_rdpru
- IR intrinsic @llvm.x86.rdpru
Differential Revision: https://reviews.llvm.org/D128934
This adds a release note entry for the new -mframe-chain option
introduced on D125094.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D129085
D128820 stopped creating div/rem constant expressions by default;
this patch removes support for them entirely.
The getUDiv(), getExactUDiv(), getSDiv(), getExactSDiv(), getURem()
and getSRem() on ConstantExpr are removed, and ConstantExpr::get()
now only accepts binary operators for which
ConstantExpr::isSupportedBinOp() returns true. Uses of these methods
may be replaced either by corresponding IRBuilder methods, or
ConstantFoldBinaryOpOperands (if a constant result is required).
On the C API side, LLVMConstUDiv, LLVMConstExactUDiv, LLVMConstSDiv,
LLVMConstExactSDiv, LLVMConstURem and LLVMConstSRem are removed and
corresponding LLVMBuild methods should be used.
Importantly, this also means that constant expressions can no longer
trap! This patch still keeps the canTrap() method to minimize diff --
I plan to drop it in a separate NFC patch.
Differential Revision: https://reviews.llvm.org/D129148
This patch adds support for Arm's Cortex-M85 CPU. The Cortex-M85 CPU is
an Arm v8.1m Mainline CPU, with optional support for MVE and PACBTI,
both of which are enabled by default.
Parts have been coauthored by by Mark Murray, Alexandros Lamprineas and
David Green.
Differential Revision: https://reviews.llvm.org/D128415
Specifically:
- Diffs are not passed around on mailing lists any more.
- Diffs should be `-U999999`.
- Clarify part about automated emails.
Differential review: https://reviews.llvm.org/D128645
This removes the insertvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This is very similar to the extractvalue removal from D125795.
insertvalue is also not supported in bitcode, so no auto-ugprade
is necessary.
ConstantExpr::getInsertValue() can be replaced with
IRBuilder::CreateInsertValue() or ConstantFoldInsertValueInstruction(),
depending on whether a constant result is required (with the latter
being fallible).
The ConstantExpr::hasIndices() and ConstantExpr::getIndices()
methods also go away here, because there are no longer any constant
expressions with indices.
Differential Revision: https://reviews.llvm.org/D128719
Summary of changes:
- Remove dst for global_atomic_add_f32, global_atomic_pk_add_f16.
- Make vdata input-only for buffer_atomic_add_f32, buffer_atomic_pk_add_f16.
- Other minor improvements.
Removes an unused function argument from a code listing in the Kaleidoscope turorial in step 9.
Reviewed By: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D128628
With this change, fuzz targets may choose to return -1
to indicate that the input should not be added to the corpus
regardless of the coverage it generated.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D128749
GNU objdump disassembles all unknown instructions by default. Match this user
friendly behavior with the cpu value `future`.
Differential Revision: https://reviews.llvm.org/D127824
GNU objdump disassembles all unknown instructions by default. Match this user
friendly behavior with the target feature "all" (D128029) designed for disassemblers.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D128030
This option allows printing all sources used by an object file.
Reviewed By: dblaikie, jhenderson
Differential Revision: https://reviews.llvm.org/D87656
clang 14 removed -gz=zlib-gnu support and ld.lld removed linker input support
for zlib-gnu in D126793. Now let's remove zlib-gnu from llvm-objcopy.
* .zdebug* sections are no longer recognized as debug sections. --strip* don't remove them.
They are copied like other opaque sections
* --decompress-debug-sections does not uncompress .zdebug* sections
* --compress-debug-sections=zlib-gnu is not supported
It is very rare but in case a user has object files using .zdebug . They can use
llvm-objcopy<15 or GNU objcopy for uncompression.
--compress-debug-sections=zlib-gnu is unlikely ever used by anyone, so I do not
add a custom diagnostic.
Differential Revision: https://reviews.llvm.org/D128688
From binutils 2.34 onwards, ar supports --output to specify a directory
where archive members should be extracted to. Port this feature.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D128626
This is a resurrection of D106421 with the change that it keeps backward-compatibility. This means decoding the previous version of `LLVM_BB_ADDR_MAP` will work. This is required as the profile mapping tool is not released with LLVM (AutoFDO). As suggested by @jhenderson we rename the original section type value to `SHT_LLVM_BB_ADDR_MAP_V0` and assign a new value to the `SHT_LLVM_BB_ADDR_MAP` section type. The new encoding adds a version byte to each function entry to specify the encoding version for that function. This patch also adds a feature byte to be used with more flexibility in the future. An use-case example for the feature field is encoding multi-section functions more concisely using a different format.
Conceptually, the new encoding emits basic block offsets and sizes as label differences between each two consecutive basic block begin and end label. When decoding, offsets must be aggregated along with basic block sizes to calculate the final offsets of basic blocks relative to the function address.
This encoding uses smaller values compared to the existing one (offsets relative to function symbol).
Smaller values tend to occupy fewer bytes in ULEB128 encoding. As a result, we get about 17% total reduction in the size of the bb-address-map section (from about 11MB to 9MB for the clang PGO binary).
The extra two bytes (version and feature fields) incur a small 3% size overhead to the `LLVM_BB_ADDR_MAP` section size.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D121346