After 675080a453, we always create SCEVs for all operands of a
SelectInst. This can cause notable compile-time regressions compared to
the recursive algorithm, which only evaluates the operands if the select
is in a form we can create a usable expression.
This approach adds additional logic to getOperandsToCreate to only
queue operands for selects if we will later be able to construct a
usable SCEV.
Unfortunately this introduces a bit of coupling between actual SCEV
construction for selects and getOperandsToCreate, but I am not sure if
there are better alternatives to address the regression mentioned for
675080a453.
This doesn't have any notable compile-time impact on CTMark.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D129731
Motivation here is to unblock LSRs ability to use ICmpZero uses - the major effect of which is to enable count down IVs. The test changes reflect this goal, but the potential impact is much broader since this isn't a change in LSR at all.
SCEVExpander needs(*) to prove that expanding the expression is safe anywhere the SCEV expression is valid. In general, we can't expand any node which might fault (or exhibit UB) unless we can either a) prove it won't fault, or b) guard the faulting case. We'd been allowing non-zero constants here; this change extends it to non-zero values.
vscale is never zero. This is already implemented in ValueTracking, and this change just adds the same logic in SCEV's range computation (which in turn drives isKnownNonZero). We should common up some logic here, but let's do that in separate changes.
(*) As an aside, "needs" is such an interesting word here. First, we don't actually need to guard this at all; we could choose to emit a select for the RHS of ever udiv and remove this code entirely. Secondly, the property being checked here is way too strong. What the client actually needs is to expand the SCEV at some particular point in some particular loop. In the examples, the original urem dominates that loop and yet we completely ignore that information when analyzing legality. I don't plan to actively pursue either direction, just noting it for future reference.
Differential Revision: https://reviews.llvm.org/D129710
This removes creation of udiv/sdiv/urem/srem constant expressions,
in preparation for their removal. I've added a
ConstantExpr::isDesirableBinOp() predicate to determine whether
an expression should be created for a certain operator.
With this patch, div/rem expressions can still be created through
explicit IR/bitcode, forbidding them entirely will be the next step.
Differential Revision: https://reviews.llvm.org/D128820
When trying to prove an implied condition on a phi by proving it
for all incoming values, we need to be careful about values coming
from a backedge, as these may refer to a previous loop iteration.
A variant of this issue was fixed in D101829, but the dominance
condition used there isn't quite right: It checks that the value
dominates the incoming block, which doesn't exclude backedges
(values defined in a loop will usually dominate the loop latch,
which is the incoming block of the backedge).
Instead, we should be checking for domination of the phi block.
Any values defined inside the loop will not dominate the loop
header phi.
Fixes https://github.com/llvm/llvm-project/issues/56242.
Differential Revision: https://reviews.llvm.org/D128640
Nowadays, we do not allow pointers in multiplies, and adds can only
have a single pointer, which is also guaranteed to be last by
complexity sorting. As such, we can somewhat simplify the treatment
of pointer types.
This allows all constant folding to happen through a single
function, without requiring special handling for loads at each
call-site.
This may not be NFC because some callers currently don't do that
special handling.
Support compares in ConstantFoldInstOperands(), instead of
forcing the use of ConstantFoldCompareInstOperands(). Also handle
insertvalue (extractvalue was already handled).
This removes a footgun, where many uses of ConstantFoldInstOperands()
need a separate check for compares beforehand. It's particularly
insidious if called on a constant expression, because it doesn't
fail in that case, but will just not do DL-dependent folding.
This patch updates SCEV construction to work iteratively instead of recursively
in most cases. It resolves stack overflow issues when trying to construct SCEVs
for certain inputs, e.g. PR45201.
The basic approach is to to use a worklist to queue operands of V which
need to be created before V. To do so, the current patch adds a
getOperandsToCreate function which collects the operands SCEV
construction depends on for a given value. This is a slight duplication
with createSCEV.
At the moment, SCEVs for phis are still created recursively.
Fixes#32078, #42594, #44546, #49293, #49599, #55333, #55511
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114650
Use poison instead of undef for SCEVUnkown of unreachable values.
This should be in line with the movement to replace undef with poison
when possible.
Suggested in D114650.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128586
This reverts commit 1fbdbb5595.
All known issues surfaced by this patch should have been fixed now.
The fixes included fixing issues with SCEV expansion in LV and DA's
reliance on LCSSA phis.
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
Also collect conditions from assume up-front in applyLoopGuards.
This allows re-using the logic to handle logical ANDs as assume
conditions.
It should should pave the road for a fix for #55645.
When computing the BECount for multi-exit loops, we need to combine
individual exit counts using umin_seq rather than umin. This is
because an earlier exit may exit on the first iteration, in which
case later exit expressions will not be evaluated and could be
poisonous. We cannot propagate potential poison values from later
exits.
In particular, this avoids the introduction of "branch on poison"
UB when optimizing multi-exit loops.
Differential Revision: https://reviews.llvm.org/D124910
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
Evaluation odering in function call arguments is implementation-dependent.
In fact, gcc evaluates bottom-top and clang does top-bottom.
Fixes#55283 partially.
Part of https://reviews.llvm.org/D125627
Fold %x umin_seq %y to %x if %x ule %y. This also subsumes the
special handling for constant operands, as if %y is constant this
folds to umin via implied poison reasoning, and if %x is constant
then either %x is not zero and it folds to umin, or it is known
zero, in which case it is ule anything.
Fold %x umin_seq %y to %x umin %y if %x cannot be zero. They only
differ in semantics for %x==0.
More generally %x *_seq %y folds to %x * %y if %x cannot be the
saturation fold (though currently we only have umin_seq).
Similar to how we convert logical and/or to bitwise and/or, we should
also convert umin_seq to umin based on implied poison reasoning. In
%x umin_seq %y, if %y being poison implies %x being poison, then we
don't need the sequential evaluation: Having %y contribute towards
the result will never make the result more poisonous. An important
corollary of this is that if %y is never poison, we also don't need
the sequential evaluation.
This avoids some of the regressions in D124910.
Differential Revision: https://reviews.llvm.org/D124921
The assertion is to check we always get backedge taken count
(`BECount`) of zero when the exit condition is in select form
(`isa<BinaryOperation>(ExitCond)`) and the exit limit for the
first operand is zero `EL0.ExactNotTaken->isZero()`). However
the assertion is checking that the exit condition is NOT in
select form. Removing the the whole assertion since we now handle
select form in ScalarEvolution::getSequentialMinMaxExpr.
Reviewed By: reames, nikic
Differential Revision: https://reviews.llvm.org/D122835
This relands commit 8f550368b1.
The test is amended with REQUIRES: x86-registered-target, in line with
the other debuginfo-scev-salvage tests.
Differential Revision: https://reviews.llvm.org/D120169
Second of two patches to extend SCEV-based salvaging to dbg.value
intrinsics that have multiple location ops pre-LSR. This second patch
adds the core implementation.
Reviewers: @StephenTozer, @djtodoro
Differential Revision: https://reviews.llvm.org/D120169
This avoids false positive verification failures if the condition
is not literally true/false, but SCEV still makes use of the fact
that a loop is not reachable through more complex reasoning.
Fixes https://github.com/llvm/llvm-project/issues/54434.
This extends SCEV verification to check not only backedge-taken
counts, but all entries in the IR -> SCEV cache. The restrictions
are the same as for the BECount case, i.e. we ignore expressions
based on undef, we only diagnose constant deltas (there are way
too many false positives otherwise) and we limit to reachable code.
Differential Revision: https://reviews.llvm.org/D121104
SCEV verification should no longer affect results of subsequent
queries, and our lit tests as well as llvm-test-suite pass with
SCEV verification enabled, so I think we can enable it by default
under EXPENSIVE_CHECKS now.
Differential Revision: https://reviews.llvm.org/D120708
Currently, we hardly ever actually run SCEV verification, even in
tests with -verify-scev. This is because the NewPM LPM does not
verify SCEV. The reason for this is that SCEV verification can
actually change the result of subsequent SCEV queries, which means
that you see different transformations depending on whether
verification is enabled or not.
To allow verification in the LPM, this limits verification to
BECounts that have actually been cached. It will not calculate
new BECounts.
BackedgeTakenInfo::getExact() is still not entirely readonly,
it still calls getUMinFromMismatchedTypes(). But I hope that this
is not problematic in the same way. (This could be avoided by
performing the umin in the other SCEV instance, but this would
require duplicating some of the code.)
Differential Revision: https://reviews.llvm.org/D120551
When a SCEVUnknown gets RAUWd, we currently drop it from the folding
set, but don't forget memoized values. I believe we should be
treating RAUW the same way as deletion here and invalidate all
caches and dependent expressions.
I don't have any specific cases where this causes issues right now,
but it does address the FIXME in https://reviews.llvm.org/D119488.
Differential Revision: https://reviews.llvm.org/D120033