D25618 added a method to verify the instruction predicates for an
emitted instruction, through verifyInstructionPredicates added into
<Target>MCCodeEmitter::encodeInstruction. This is a very useful idea,
but the implementation inside MCCodeEmitter made it only fire for object
files, not assembly which most of the llvm test suite uses.
This patch moves the code into the <Target>_MC::verifyInstructionPredicates
method, inside the InstrInfo. The allows it to be called from other
places, such as in this patch where it is called from the
<Target>AsmPrinter::emitInstruction methods which should trigger for
both assembly and object files. It can also be called from other places
such as verifyInstruction, but that is not done here (it tends to catch
errors earlier, but in reality just shows all the mir tests that have
incorrect feature predicates). The interface was also simplified
slightly, moving computeAvailableFeatures into the function so that it
does not need to be called externally.
The ARM, AMDGPU (but not R600), AVR, Mips and X86 backends all currently
show errors in the test-suite, so have been disabled with FIXME
comments.
Recommitted with some fixes for the leftover MCII variables in release
builds.
Differential Revision: https://reviews.llvm.org/D129506
This reverts commit e2fb8c0f4b as it does
not build for Release builds, and some buildbots are giving more warning
than I saw locally. Reverting to fix those issues.
D25618 added a method to verify the instruction predicates for an
emitted instruction, through verifyInstructionPredicates added into
<Target>MCCodeEmitter::encodeInstruction. This is a very useful idea,
but the implementation inside MCCodeEmitter made it only fire for object
files, not assembly which most of the llvm test suite uses.
This patch moves the code into the <Target>_MC::verifyInstructionPredicates
method, inside the InstrInfo. The allows it to be called from other
places, such as in this patch where it is called from the
<Target>AsmPrinter::emitInstruction methods which should trigger for
both assembly and object files. It can also be called from other places
such as verifyInstruction, but that is not done here (it tends to catch
errors earlier, but in reality just shows all the mir tests that have
incorrect feature predicates). The interface was also simplified
slightly, moving computeAvailableFeatures into the function so that it
does not need to be called externally.
The ARM, AMDGPU (but not R600), AVR, Mips and X86 backends all currently
show errors in the test-suite, so have been disabled with FIXME
comments.
Differential Revision: https://reviews.llvm.org/D129506
If the add has more than one use then applying the transformation
won't cause it to be removed, so we can end up applying it again
causing an infinite loop.
Differential Revision: https://reviews.llvm.org/D129361
Currently, for vectorised loops that use the get.active.lane.mask
intrinsic we only use the mask for predicated vector operations,
such as masked loads and stores, etc. The loop itself is still
controlled by comparing the canonical induction variable with the
trip count. However, for some targets this is inefficient when it's
cheap to use the mask itself to control the loop.
This patch adds support for using the active lane mask for control
flow by:
1. Generating the active lane mask for the next iteration of the
vector loop, rather than the current one. If there are still any
remaining iterations then at least the first bit of the mask will
be set.
2. Extract the first bit of this mask and use this bit for the
conditional branch.
I did this by creating a new VPActiveLaneMaskPHIRecipe that sets
up the initial PHI values in the vector loop pre-header. I've also
made use of the new BranchOnCond VPInstruction for the final
instruction in the loop region.
Differential Revision: https://reviews.llvm.org/D125301
These three subtarget features are meant to control where MVE
instructions take 1 vs 2 vs 4 architectural beats. The mve1beat feature
is described as "Model MVE instructions as a 1 beat per tick
architecture", meaning MVE instruction will execute over 4 cycles.
mve4beat is the opposite where the entire 4 beats of the MVE instruction
execute in a single cycle. The costs for the two were backwards though,
not matching the cycle counts like they should. This patch switches the
costs on the two to bring them in-line with expectations.
Differential Revision: https://reviews.llvm.org/D129141
This patch adds support for Arm's Cortex-M85 CPU. The Cortex-M85 CPU is
an Arm v8.1m Mainline CPU, with optional support for MVE and PACBTI,
both of which are enabled by default.
Parts have been coauthored by by Mark Murray, Alexandros Lamprineas and
David Green.
Differential Revision: https://reviews.llvm.org/D128415
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
Deciding to load an arbitrary global based on whether the entire module is
being built for long calls is pretty clearly spurious, and in fact the existing
indirect logic is sufficient.
Running iwyu-diff on LLVM codebase since fb67d683db detected a few
regressions, fixing them.
The impact on preprocessed output is negligible: -4k lines.
This fixes the combining of constant vector GEP operands in the
optimization of MVE gather/scatter addresses, when opaque pointers are
enabled. As opaque pointers reduce the number of bitcasts between geps,
more can be folded than before. This can cause problems if the index
types are now different between the two geps.
This fixes that by making sure each constant is scaled appropriately,
which has the effect of transforming the geps to have a scale of 1,
changing [r0, q0, uxtw #1] gathers to [r0, q0] with a larger q0. This
helps use a simpler instruction that doesn't need the extra uxtw.
Differential Revision: https://reviews.llvm.org/D127733
Although this doesn't usually come up, we can have uses of the
BaseAccess of a distributed postinc being a PHI. This doesn't need the
usual dominance check as we will dominate along the phi edge, allowing
us to still create a postinc load/store.
Differential Revision: https://reviews.llvm.org/D127676
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
Currently the a AAPCS compliant frame record is not always created for
functions when it should. Although a consistent frame record might not
be required in some cases, there are still scenarios where applications
may want to make use of the call hierarchy made available trough it.
In order to enable the use of AAPCS compliant frame records whilst keep
backwards compatibility, this patch introduces a new command-line option
(`-mframe-chain=[none|aapcs|aapcs+leaf]`) for Aarch32 and Thumb backends.
The option allows users to explicitly select when to use it, and is also
useful to ensure the extra overhead introduced by the frame records is
only introduced when necessary, in particular for Thumb targets.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D125094
Simiarly to what's done on both ARM's and AArch64's frame lowering code,
this updates Thumb1FrameLowering to use the FrameDestroy Machine
Instruction flag to identify instructions inserted as part of the epilog
instead of relying on assumptions about specific machine instructions.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D126285
In the same spirit as D73543 and in reply to https://reviews.llvm.org/D126768#3549920 this patch is adding support for `__builtin_memset_inline`.
The idea is to get support from the compiler to easily write efficient memory function implementations.
This patch could be split in two:
- one for the LLVM part adding the `llvm.memset.inline.*` intrinsics.
- and another one for the Clang part providing the instrinsic as a builtin.
Differential Revision: https://reviews.llvm.org/D126903
We already have patterns for matching fadd(select(..., -0.0)),
but an upcoming patch will lead to patterns using +0.0 as the
identity instead of -0.0. I'm adding support for these patterns
now to avoid any regressions for MVE.
Differential Revision: https://reviews.llvm.org/D127275
MIR support is totally unusable for AMDGPU without this, since the set
of reserved registers is set from fields here.
Add a clone method to MachineFunctionInfo. This is a subtle variant of
the copy constructor that is required if there are any MIR constructs
that use pointers. Specifically, at minimum fields that reference
MachineBasicBlocks or the MachineFunction need to be adjusted to the
values in the new function.
I can't remove the function just yet as it is used in the generated .inc files.
I would also like to provide a way to compare alignment with TypeSize since it came up a few times.
Differential Revision: https://reviews.llvm.org/D126910
The MVE shuffle costing for VREV instructions was making incorrect
assumptions as to legalized vector types remaining as vectors. Add a
quick check to ensure they are indeed vectors before attempting to get
the number of elements.
The directive name is not useful because the next line replicates the error line
which includes the directive. The prevailing style uses "expected newline".
We intentionally disable Thumb2SizeReduction for SEH
prologues/epilogues, to avoid needing to guess what will happen with
the instructions in a potential future pass in frame lowering.
But for this specific case, where we know we can express the
intent with a narrow instruction, change to that instruction form
directly in frame lowering.
Differential Revision: https://reviews.llvm.org/D126949
We intentionally disable Thumb2SizeReduction for SEH
prologues/epilogues, to avoid needing to guess what will happen with
the instructions in a potential future pass in frame lowering.
But for this specific case, where we know we can express the
intent with a narrow instruction, change to that instruction form
directly in frame lowering.
Differential Revision: https://reviews.llvm.org/D126948