This is a more convoluted form of the same pattern "sext of NSW trunc",
but in this case the operand of trunc was a right-shift,
and the truncation chops off just the zero bits that were shifted-in.
This patch is related to https://reviews.llvm.org/D100032 which define
some illegal types or operations for x86_amx. There are no arguments,
arrays, pointers, vectors or constants of x86_amx.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D100472
A bug was found within InstCombineCasts where a function call
is only implemented to work with FixedVectors. This caused a
crash when a ScalableVector was passed to this function.
This commit introduces a regression test which recreates the
failure and a bug fix.
Differential Revision: https://reviews.llvm.org/D98351
Sometimes you want to get a type with same vector element count
as the current type, but different element type,
but there's no QOL wrapper to do that. Add one.
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
The load/store instruction will be transformed to amx intrinsics
in the pass of AMX type lowering. Prohibiting the pointer cast
make that pass happy.
Differential Revision: https://reviews.llvm.org/D98247
The structure of this fold is suspect vs. most of instcombine
because it creates instructions and tries to delete them
immediately after.
If we don't have the operand types for the icmps, then we are
not behaving as assumed. And as shown in PR49475, we can inf-loop.
Currently make_early_inc_range cannot be used with iterators with
operator* implementations that do not return a reference.
Most notably in the LLVM codebase, this means the User iterator ranges
cannot be used with make_early_inc_range, which slightly simplifies
iterating over ranges while elements are removed.
Instead of directly using BaseT::reference as return type of operator*,
this patch uses decltype to get the actual return type of the operator*
implementation in WrappedIteratorT.
This patch also updates a few places to use make use of
make_early_inc_range.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93992
If the shift amount was undef for some lane, the shift amount in opposite
shift is irrelevant for that lane, and the new shift amount for that lane
can be undef.
If the shift amount was undef for some lane, the shift amount in opposite
shift is irrelevant for that lane, and the new shift amount for that lane
can be undef.
As discussed on PR35155, this extends narrowFunnelShift (recently renamed from narrowRotate) to support basic funnel shift patterns.
Unlike matchFunnelShift we don't include the computeKnownBits limitation as extracting the pattern from the zext/trunc layers should be a indicator of reasonable funnel shift codegen, in D89139 we demonstrated how to efficiently promote funnel shifts to wider types.
Differential Revision: https://reviews.llvm.org/D89542
Prep work for PR35155 - renamed narrowRotate to narrowFunnelShift, rewrote some comments and adjusted code to collect separate shift values, although we bail if they don't match (still only rotations are only actually folded).
I'm trying to match matchFunnelShift as much as possible in case we finally get to merge these one day.
Based on the recent patches D88475 and D88429 where we are losing undef values due to extension/comparisons.
I've added a Constant::mergeUndefsWith method that merges the undef scalar/elements from another Constant into a specific Constant.
Differential Revision: https://reviews.llvm.org/D88687
Annoyingly vectors aren't supported by shouldChangeType(), but we have precedents for always performing this on vector types (e.g. narrowBinOp).
Differential Revision: https://reviews.llvm.org/D89067
Attempt to fold trunc (*shr (trunc A), C) --> trunc(*shr A, C) iff the shift amount if small enough that all zero/sign bits created by the shift are removed by the last trunc.
Helps fix the regressions encountered in D88316.
I've tweaked a couple of shift values as suggested by @lebedev.ri to ensure we have coverage of shift values close (above/below) to the max limit.
Differential Revision: https://reviews.llvm.org/D88429
This came from @lebedev.ri's suggestion to use m_SpecificInt_ICMP for D88429 - since I was going to change the m_APInt to m_Constant for that patch I thought I would do it for the only other user of the APInt first.
I've added a ConstantExpr::getUMin helper - its trivial to add UMAX/SMIN/SMAX but thought I'd wait until we have use cases.
Differential Revision: https://reviews.llvm.org/D88475
In this patch I've fixed some warnings that arose from the implicit
cast of TypeSize -> uint64_t. I tried writing a variety of different
cases to show how this optimisation might work for scalable vectors
and found:
1. The optimisation does not work for cases where the cast type
is scalable and the allocated type is not. This because we need to
know how many times the cast type fits into the allocated type.
2. If we pass all the various checks for the case when the allocated
type is scalable and the cast type is not, then when creating the
new alloca we have to take vscale into account. This leads to
sub-optimal IR that is worse than the original IR.
3. For the remaining case when both the alloca and cast types are
scalable it is hard to find examples where the optimisation would
kick in, except for simple bitcasts, because we typically fail the
ABI alignment checks.
For now I've changed the code to bail out if only one of the alloca
and cast types is scalable. This means we continue to support the
existing cases where both types are fixed, and also the specific case
when both types are scalable with the same size and alignment, for
example a simple bitcast of an alloca to another type.
I've added tests that show we don't attempt to promote the alloca,
except for simple bitcasts:
Transforms/InstCombine/AArch64/sve-cast-of-alloc.ll
Differential revision: https://reviews.llvm.org/D87378
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
Narrowing an input expression of a truncate to a type larger than the
result of the truncate won't allow removing the truncate, but it may
enable further optimizations, e.g. allowing for larger vectorization
factors.
For now this is intentionally limited to integer types only, to avoid
producing new vector ops that might not be suitable for the target.
If we know that the only user is a trunc, we can also be allow more
cases, e.g. also shortening expressions with some additional shifts.
I would appreciate feedback on the best place to do such a narrowing.
This fixes PR43580.
Reviewers: spatel, RKSimon, lebedev.ri, xbolva00
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D82973
Currently canEvaluateTruncated can only attempt to truncate shifts if they are scalar/uniform constant amounts that are in range.
This patch replaces the constant extraction code with KnownBits handling, using the KnownBits::getMaxValue to check that the amounts are inrange.
This enables support for nonuniform constant cases, and also variable shift amounts that have been masked somehow. Annoyingly, this still won't work for vectors with (demanded) undefs as KnownBits returns nothing in those cases, but its a definite improvement on what we currently have.
Differential Revision: https://reviews.llvm.org/D83127
As noted on PR46531, we were only performing this transform on uniform vectors as we were using the m_APInt pattern matcher to extract the shift amount.
Differential Revision: https://reviews.llvm.org/D83035
This is intended to preserve the logic of the existing transform,
but remove unnecessary restrictions on uses and types.
https://rise4fun.com/Alive/pYfR
Pre: C1 <= width(C1) - 8
%B = sext i8 %A
%C = lshr %B, C1
%r = trunc %C to i8
=>
%r = ashr i8 %A, trunc(umin(C1, 7))
Whilst trying to compile this test to assembly:
CodeGen/aarch64-sve-intrinsics/acle_sve_reinterpret.c
I discovered some warnings were firing in InstCombiner::visitBitCast
due to calls to getNumElements() for scalable vector types. These
calls only really made sense for fixed width vectors so I have fixed
up the code appropriately.
Differential Revision: https://reviews.llvm.org/D80559
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
This was originally in D79116.
Converting from a narrow-enough FP source value to integer and
back to FP guarantees that the conversion to FP is exact because
of UB/poison-on-overflow.
This was suggested in PR36617:
https://bugs.llvm.org/show_bug.cgi?id=36617#c19
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
We can combine a floating-point extension cast with a conversion
from integer if we know the earlier cast is exact.
This is an optimization suggested in PR36617:
https://bugs.llvm.org/show_bug.cgi?id=36617#c19
However, this patch does not change the example suggested there.
This patch only uses the existing analysis to handle cases where
the integer source value magnitude is narrower than the
intermediate FP mantissa (guarantees that the conversion to FP is
exact). Follow-up patches to the analysis function can enable
more cases.
Differential Revision: https://reviews.llvm.org/D79116
As suggested in D79116 - there's shared logic between the
existing code and potential new folds. This could go in
ValueTracking if it seems generally useful.
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: sdesmalen, rriddle, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77263
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Canonicalize the case when a scalar extracted from a vector is
truncated. Transform such cases to bitcast-then-extractelement.
This will enable erasing the truncate operation.
This commit fixes PR45314.
reviewers: spatel
Differential revision: https://reviews.llvm.org/D76983
The existence of the class is more confusing than helpful, I think; the
commonality is mostly just "GEP is legal", which can be queried using
APIs on GetElementPtrInst.
Differential Revision: https://reviews.llvm.org/D75660
Summary: Rewrite the fsub-0.0 idiom to fneg and always emit fneg for fp
negation. This also extends the scalarization cost in instcombine for unary
operators to result in the same IR rewrites for fneg as for the idiom.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75467
This makes sure that the constant expression bitcast goes through
target-dependent constant folding, and thus avoids an additional
iteration of InstCombine.
Spin-off from D75407. As described there, ConstantFoldConstant()
currently returns null for non-ConstantExpr/ConstantVector inputs,
but otherwise always returns non-null, independently of whether
any folding has happened or not.
This is confusing and makes consumer code more complicated.
I would expect either that ConstantFoldConstant() returns only if
it actually folded something, or that it always returns non-null.
I'm going to the latter possibility here, which appears to be more
useful considering existing usage.
Differential Revision: https://reviews.llvm.org/D75543
Use UnaryOperator::CreateFNeg instead.
Summary:
With the introduction of the native fneg instruction, the
fsub -0.0, %x idiom is obsolete. This patch makes LLVM
emit fneg instead of the idiom in all places.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75130
This is a bug noted in the recent D72733 and seen
in the similar transform just above the changed source code.
I added tests with illegal types and zexts to show the bug -
we could transform legal phi ops to illegal, etc. I did not add
tests with trunc because we won't see any diffs on those patterns.
That is because InstCombiner::SliceUpIllegalIntegerPHI() appears to
do those transforms independently of datalayout. It can also create
more casts than are present in existing code.
There are some existing regression tests that do not include a
datalayout that would be altered by this fix. I assumed that the
lack of a datalayout in those regression files is an oversight, so
I added the minimal layout (make i32 legal) necessary to preserve
behavior on those tests.
Differential Revision: https://reviews.llvm.org/D73907
Adds a replaceOperand() helper, which is like Instruction.setOperand()
but adds the old operand to the worklist. This reduces the amount of
missing or incorrect worklist management.
This only applies the helper to a relatively small subset of
setOperand() calls in InstCombine, namely those of the pattern
`I.setOperand(); return &I;`, where it is most obviously applicable.
Differential Revision: https://reviews.llvm.org/D73803
This renames Worklist.AddDeferred() to Worklist.add() and
Worklist.Add() to Worklist.push(). The intention here is that
Worklist.add() should be the go-to method for explicit worklist
management, while the raw Worklist.push() is mostly for
InstCombine internals. I will then migrate uses of Worklist.push()
to Worklist.add() in followup changes.
As suggested by spatel on D73411 I'm also changing the remaining
method names to lowercase first character, in line with current
coding standards.
Differential Revision: https://reviews.llvm.org/D73745
D47163 created a rule that we should not change the casted
type of a select when we have matching types in its compare condition.
That was intended to help vector codegen, but it also could create
situations where we miss subsequent folds as shown in PR44545:
https://bugs.llvm.org/show_bug.cgi?id=44545
By using shouldChangeType(), we can continue to get the vector folds
(because we always return false for vector types). But we also solve
the motivating bug because it's ok to narrow the scalar select in that
example.
Our canonicalization rules around select are a mess, but AFAICT, this
will not induce any infinite looping from the reverse transform (but
we'll need to watch for that possibility if committed).
Side note: there's a similar use of shouldChangeType() for phi ops
just below this diff, and the source and destination types appear to
be reversed.
Differential Revision: https://reviews.llvm.org/D72733
This fixes the issue encountered in D71164. Instead of using a
range-based for, manually iterate over the users and advance the
iterator beforehand, so we do not skip any users due to iterator
invalidation.
Differential Revision: https://reviews.llvm.org/D72657
This reverts commit a041c4ec6f.
This looks like a non-trivial change and there has been no code
reviews (at least there were no phabricator revisions attached to the
commit description). It is also causing a regression in one of our
downstream integration tests, we haven't been able to come up with a
minimal reproducer yet.
This does not solve PR17101, but it is one of the
underlying diffs noted here:
https://bugs.llvm.org/show_bug.cgi?id=17101#c8
We could ease the one-use checks for the 'clear'
(no 'not' op) half of the transform, but I do not
know if that asymmetry would make things better
or worse.
Proofs:
https://rise4fun.com/Alive/uVB
Name: masked bit set
%sh1 = shl i32 1, %y
%and = and i32 %sh1, %x
%cmp = icmp ne i32 %and, 0
%r = zext i1 %cmp to i32
=>
%s = lshr i32 %x, %y
%r = and i32 %s, 1
Name: masked bit clear
%sh1 = shl i32 1, %y
%and = and i32 %sh1, %x
%cmp = icmp eq i32 %and, 0
%r = zext i1 %cmp to i32
=>
%xn = xor i32 %x, -1
%s = lshr i32 %xn, %y
%r = and i32 %s, 1
Judging by the existing comments, this was the intention, but the
transform never actually checked if the existing phi's would be removed.
See https://bugs.llvm.org/show_bug.cgi?id=44242 for an example where
this causes much worse code generation on AMDGPU.
Differential Revision: https://reviews.llvm.org/D71209
Summary:
This patch adds instructions to the InstCombine worklist after they are properly inserted. This way we don't get `<badref>`s printed when logging added instructions.
It also adds a check in `Worklist::Add` that ensures that all added instructions have parents.
Simple test case that illustrates the difference when run with `--debug-only=instcombine`:
```
define i32 @test35(i32 %a, i32 %b) {
%1 = or i32 %a, 1135
%2 = or i32 %1, %b
ret i32 %2
}
```
Before this patch:
```
INSTCOMBINE ITERATION #1 on test35
IC: ADDING: 3 instrs to worklist
IC: Visiting: %1 = or i32 %a, 1135
IC: Visiting: %2 = or i32 %1, %b
IC: ADD: %2 = or i32 %a, %b
IC: Old = %3 = or i32 %1, %b
New = <badref> = or i32 %2, 1135
IC: ADD: <badref> = or i32 %2, 1135
...
```
With this patch:
```
INSTCOMBINE ITERATION #1 on test35
IC: ADDING: 3 instrs to worklist
IC: Visiting: %1 = or i32 %a, 1135
IC: Visiting: %2 = or i32 %1, %b
IC: ADD: %2 = or i32 %a, %b
IC: Old = %3 = or i32 %1, %b
New = <badref> = or i32 %2, 1135
IC: ADD: %3 = or i32 %2, 1135
...
```
Reviewers: fhahn, davide, spatel, foad, grosser, nikic
Reviewed By: nikic
Subscribers: nikic, lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71093
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This makes no difference currently because we don't apply FMF
to FP casts, but that may change.
This could also be a place to add a fold for select with fptrunc,
so it will make that patch easier/smaller.
This reverts these two commits
[InstCombine] Turn (extractelement <1 x i64/double> (bitcast (x86_mmx))) into a single bitcast from x86_mmx to i64/double.
[InstCombine] Don't transform bitcasts between x86_mmx and v1i64 into insertelement/extractelement
We're seeing at least one internal test failure related to a
bitcast that was previously before an inline assembly block
containing emms being placed after it. This leads to the mmx
state ending up not empty after the emms. IR has no way to
make any specific guarantees about this. Reverting these patches
to get back to previous behavior which at least worked for this
test.
Summary:
optimizeVectorResize is rewriting patterns like:
%1 = bitcast vector %src to integer
%2 = trunc/zext %1
%dst = bitcast %2 to vector
Since bitcasting between integer an vector types gives
different integer values depending on endianness, we need
to take endianness into account. As it happens the old
implementation only produced the correct result for little
endian targets.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=44178
Reviewers: spatel, lattner, lebedev.ri
Reviewed By: spatel, lebedev.ri
Subscribers: lebedev.ri, hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70844
x86_mmx is conceptually a vector already. Don't introduce an extra conversion between it and scalar i64.
I'm using VectorType::isValidElementType which checks for floating point, integer, and pointers to hopefully make this more readable than just blacklisting x86_mmx.
Differential Revision: https://reviews.llvm.org/D69964
Follow-up to D68244 to account for a corner case discussed in:
https://bugs.llvm.org/show_bug.cgi?id=43501
Add one more restriction: if the pointer is deref-or-null and in a non-default
(non-zero) address space, we can't assume inbounds.
Differential Revision: https://reviews.llvm.org/D68706
llvm-svn: 374728