As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
In D95959, the improve analysis for "C >> X" broken the fold
((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
It simplifies C, but fails to satisfy the fold condition.
This patch try to restore C before the fold.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D128790
I looked at canonicalizing in the other direction, but that causes
many potential regressions and infinite loops because we already
(possibly wrongly) canonicalize "trunc X to i1" into an and+icmp.
This has a data layout restriction to avoid creating illegal
mask instructions, but we could remove that if we can show
that the backend can undo this when needed.
The motivating example from issue #56119 is modeled by the
PhaseOrdering test.
The assert was added with 0399473de8 and is correct for that
pattern, but it is off-by-1 with the enhancement in d4f39d8333.
The transforms are still correct with the new pre-condition:
https://alive2.llvm.org/ce/z/6_6ghmhttps://alive2.llvm.org/ce/z/_GTBUt
And as shown in the new test, the transform is expected with
'ult' - in that case, the icmp reduces to test if the shift
amount is 0.
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
Existing condition for
fold icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
missed some boundary. It cause this fold don't work for some cases, and the
reason is due to signed number overflow.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D127188
X <=u (sext i1 Y) --> (X == 0) | Y
https://alive2.llvm.org/ce/z/W_tZzo
This is the conjugate/sibling pattern suggested with D126171
for a sign-extended bool value.
This extends the fold from D126410 / 3952c905ef
to allow for the only case where it works with signed
division:
https://alive2.llvm.org/ce/z/k7_ypu
(X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
(X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
This is another improvement based on #55695.
With large compare constant:
(X u/ Y) == C --> (X == C) && (Y == 1)
(X u/ Y) != C --> (X != C) || (Y != 1)
https://alive2.llvm.org/ce/z/EhKwh6
There are various potential missing icmp (div) transforms shown here:
https://github.com/llvm/llvm-project/issues/55695
This is a generalization for part of the udiv + equality.
I didn't check in detail, but some of those may only make sense as
codegen transforms.
This results in one extra instruction in IR, but it is better for
analysis, and looks much better in codegen on all targets that I tried.
Differential Revision: https://reviews.llvm.org/D126410
X <u (zext i1 Y) --> (X == 0) && Y
https://alive2.llvm.org/ce/z/avQDRY
This is a generalization of 4069cccf3b based on the post-commit suggestion.
This also adds the i1 type check and tests that were missing from the earlier
attempt; that commit caused several bot fails and was reverted.
Differential Revision: https://reviews.llvm.org/D126171
This is the specific pattern seen in #53432, but it can be extended
in multiple ways:
1. The 'zext' could be an 'and'
2. The 'sub' could be some other binop with a similar ==0 property (udiv).
There might be some way to generalize using knownbits, but that
would require checking that the 'bool' value is created with
some instruction that can be replaced with new icmp+logic.
https://alive2.llvm.org/ce/z/-KCfpa
In this patch we add a function foldICmpInstWithConstantAllowUndef
to fold integer comparisons with a constant operand: icmp Pred X, C
where X is some kind of instruction and C is AllowUndef.
We move this fold to the new function, so that it can solve undef elts in a vector.
Reviewed By: spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D125220
We could do better by inserting a bitcast from scalar int
to vector int or using an insertelement (the alternate test
does not crash because there's an independent fold like that).
But this doesn't seem like a likely pattern, so just bail out
for now.
Fixes issue #55516.
There is a long function foldICmpInstWithConstant,
we can separate a function foldICmpBinOpWithConstant from it.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125457
30a12f3f63 switched the type check
to use the GEP result type rather than the GEP operand type.
However, the GEP result types may match even if the operand types
don't, in case GEPs with scalar/vector base and vector index
are compared.
Fixes https://github.com/llvm/llvm-project/issues/55363.
Try to push an icmp into a select even if the icmp operand isn't
constant - perform a generic SimplifyICmpInst instead.
This doesn't appear to impact compile-time much, and forming
logical and/or is generally profitable, as we have very good
support for them.
Normally the index type will already be canonicalized here, but
this is not guaranteed depending on visitation order. The code
was already accounting for a potentially needed sext, but a trunc
may also be needed.
Add a ConstantExpr::getSExtOrTrunc() helper method to make this
simpler. This matches the corresponding IRBuilder method in behavior.
Fixes https://github.com/llvm/llvm-project/issues/55228.
This is a hacky fix for:
https://github.com/llvm/llvm-project/issues/54558
As discussed there, codegen regressed when we opened up this transform
to allow extra uses ( 61580d0949 ), and it's not clear how to
undo the transforms at the later stage of compilation.
As noted in the code comments, there's a set of remaining folds that
are still limited to one-use, so we can try harder to refine and
expand the limitations on these folds, but it's likely to be an
up-and-down battle as we find and overcome similar regressions.
Differential Revision: https://reviews.llvm.org/D122909
This is a retry of 9397bdc67e - that was reverted until
we had a clang warning in place to alert users about a
possible mistake in source. The warning was added with
ab982eace6.
This is noted as a missing clang warning in #54222,
but it is also a missing optimization opportunity.
Alive2 proofs:
https://alive2.llvm.org/ce/z/Q8drDqhttps://alive2.llvm.org/ce/z/pE6LRt
I don't see a single conversion for all predicates
using "getFCmpCode" logic, so other predicates are
left as a TODO item.
X (any pred) -X --> X (any pred) 0.0
This works with all FP values and preserves FMF.
Alive2 examples:
https://alive2.llvm.org/ce/z/dj6jhp
This can also create one of the patterns that we match as "fabs"
as shown in one of the test diffs.
This reverts commit 9397bdc67e.
This optimization is likely to surprise programmers as seen
in post-commit comments, so we should add a clang warning
first (that is proposed in D121306).
As discussed on Issue #32161 this fold can be generalized a lot more than it currently is, but this patch at least adds vector support.
Differential Revision: https://reviews.llvm.org/D121358
This is noted as a missing clang warning in #54222
(and we should still make that enhancement).
Alive2 proofs:
https://alive2.llvm.org/ce/z/Q8drDqhttps://alive2.llvm.org/ce/z/pE6LRt
I don't see a single conversion for all predicates
using "getFCmpCode" logic, so other predicates are
left as a TODO item.
This is a recommit without changes. I originally reverted this
due to a significant code-size regression on tramp3d-v4, however
further investigation showed that in the tramp3d-v4 case this
change enables additional optimizations (in particular more
jump threading), which happens to reduce the size of a function
just enough to be eligible for inlining at hot callsites, which
results in the code size increase. As such, this was just bad
luck.
-----
This one-use limitation is artificial, we do not increase
instruction count if we perform the fold with multiple uses. The
motivating case is shown in @sub_eq_zero_select, where the one-use
limitation causes us to miss a subsequent select fold.
I believe the backend is pretty good about reusing flag-producing
subs for cmps with same operands, so I think doing this is fine.
Differential Revision: https://reviews.llvm.org/D120337
This one-use limitation is artificial, we do not increase
instruction count if we perform the fold with multiple uses. The
motivating case is shown in @sub_eq_zero_select, where the one-use
limitation causes us to miss a subsequent select fold.
I believe the backend is pretty good about reusing flag-producing
subs for cmps with same operands, so I think doing this is fine.
Differential Revision: https://reviews.llvm.org/D120337
Replace matchSelectPattern pattern match with the more general m_SMin so that it can handle smin intrinsics as well as the icmp+select pattern
Noticed while reviewing regressions from D98152
Following Sanjay's proposal from discussion in D118317, this patch
generalizes and-reduce handling to fold the following pattern
```
icmp ne (bitcast(icmp ne (lhs, rhs)), 0)
```
into
```
icmp ne (bitcast(lhs), bitcast(rhs))
```
https://alive2.llvm.org/ce/z/WDcuJ_
Differential Revision: https://reviews.llvm.org/D118431
Reviewed By: lebedev.ri