Currently, LLVM doesn't have the correct shadow offset
mapping for the n32 ABI.
This patch introduces the correct shadow offset value
for the n32 ABI - 1ULL << 29.
Differential Revision: https://reviews.llvm.org/D127096
Now that we have the sanitizer metadata that is actually on the global
variable, and now that we use debuginfo in order to do symbolization of
globals, we can delete the 'llvm.asan.globals' IR synthesis.
This patch deletes the 'location' part of the __asan_global that's
embedded in the binary as well, because it's unnecessary. This saves
about ~1.7% of the optimised non-debug with-asserts clang binary.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D127911
Information in the function `Prologue Data` is intentionally opaque.
When a function with `Prologue Data` is duplicated. The self (global
value) references inside `Prologue Data` is still pointing to the
original function. This may cause errors like `fatal error: error in backend: Cannot represent a difference across sections`.
This patch detaches the information from function `Prologue Data`
and attaches it to a function metadata node.
This and D116130 fix https://github.com/llvm/llvm-project/issues/49689.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D115844
Currently, we only check !nosanitize metadata for instruction passed to function `getInterestingMemoryOperands()` or instruction which is a cannot return callable instruction.
This patch add this check to any instruction.
E.g. ASan shouldn't instrument the instruction inserted by UBSan/pointer-overflow.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126269
This patch adds !nosanitize metadata to FixedMetadataKinds.def, !nosanitize indicates that LLVM should not insert any sanitizer instrumentation.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126294
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
This emits an `st_size` that represents the actual useable size of an object before the redzone is added.
Reviewed By: vitalybuka, MaskRay, hctim
Differential Revision: https://reviews.llvm.org/D123010
The patch adds SPIRV-specific MC layer implementation, SPIRV object
file support and SPIRVInstPrinter.
Differential Revision: https://reviews.llvm.org/D116462
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
Allow receiving memcpy/memset/memmove instrumentation by using __asan or
__hwasan prefixed versions for AddressSanitizer and HWAddressSanitizer
respectively when compiling in kernel mode, by passing params
-asan-kernel-mem-intrinsic-prefix or -hwasan-kernel-mem-intrinsic-prefix.
By default the kernel-specialized versions of both passes drop the
prefixes for calls generated by memintrinsics. This assumes that all
locations that can lower the intrinsics to libcalls can safely be
instrumented. This unfortunately is not the case when implicit calls to
memintrinsics are inserted by the compiler in no_sanitize functions [1].
To solve the issue, normal memcpy/memset/memmove need to be
uninstrumented, and instrumented code should instead use the prefixed
versions. This also aligns with ASan behaviour in user space.
[1] https://lore.kernel.org/lkml/Yj2yYFloadFobRPx@lakrids/
Reviewed By: glider
Differential Revision: https://reviews.llvm.org/D122724
DXIL is wrapped in a container format defined by the DirectX 11
specification. Codebases differ in calling this format either DXBC or
DXILContainer.
Since eventually we want to add support for DXBC as a target
architecture and the format is used by DXBC and DXIL, I've termed it
DXContainer here.
Most of the changes in this patch are just adding cases to switch
statements to address warnings.
Reviewed By: pete
Differential Revision: https://reviews.llvm.org/D122062
This is a clean-up patch. The functional pass was rolled into the module pass in D112732.
Reviewed By: vitalybuka, aeubanks
Differential Revision: https://reviews.llvm.org/D120674
This patch is the first in a series of patches to upstream the support for Apple's DriverKit. Once complete, it will allow targeting DriverKit platform with Clang similarly to AppleClang.
This code was originally authored by JF Bastien.
Differential Revision: https://reviews.llvm.org/D118046
For ASan this will effectively serve as a synonym for
__attribute__((no_sanitize("address"))).
Adding the disable_sanitizer_instrumentation to functions will drop the
sanitize_XXX attributes on the IR level.
This is the third reland of https://reviews.llvm.org/D114421.
Now that TSan test is fixed (https://reviews.llvm.org/D120050) there
should be no deadlocks.
Differential Revision: https://reviews.llvm.org/D120055
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This reverts commit 2b554920f1.
This change causes tsan test timeout on x86_64-linux-autoconf.
The timeout can be reproduced by:
git clone https://github.com/llvm/llvm-zorg.git
BUILDBOT_CLOBBER= BUILDBOT_REVISION=eef8f3f85679c5b1ae725bade1c23ab7bb6b924f llvm-zorg/zorg/buildbot/builders/sanitizers/buildbot_standard.sh
Added and implemented -asan-use-stack-safety flag, which control if ASan would use the Stack Safety results to emit less code for operations which are marked as 'safe' by the static analysis.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D112098
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Change the asan-module pass into a MODULE_PASS_WITH_PARAMS in the
pass registry, and add a single parameter called 'kernel' that
can be set instead of having a special pass name 'kasan-module'
to trigger that special pass config.
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Added '-print-pipeline-passes' printing of parameters for those passes
declared with *_WITH_PARAMS macro in PassRegistry.def.
Note that it only prints the parameters declared inside *_WITH_PARAMS as
in a few cases there appear to be additional parameters not parsable.
The following passes are now covered (i.e. all of those with *_WITH_PARAMS in
PassRegistry.def).
LoopExtractorPass - loop-extract
HWAddressSanitizerPass - hwsan
EarlyCSEPass - early-cse
EntryExitInstrumenterPass - ee-instrument
LowerMatrixIntrinsicsPass - lower-matrix-intrinsics
LoopUnrollPass - loop-unroll
AddressSanitizerPass - asan
MemorySanitizerPass - msan
SimplifyCFGPass - simplifycfg
LoopVectorizePass - loop-vectorize
MergedLoadStoreMotionPass - mldst-motion
GVN - gvn
StackLifetimePrinterPass - print<stack-lifetime>
SimpleLoopUnswitchPass - simple-loop-unswitch
Differential Revision: https://reviews.llvm.org/D109310
The implementation uses the int_asan_check_memaccess intrinsic to instrument the code. The intrinsic is replaced by a call to a function which performs the access check. The generated function names encode the input register name as a number using Reg - X86::NoRegister formula.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D107850