Commit Graph

709 Commits

Author SHA1 Message Date
Max Kazantsev 9224d322a2 [IndVars] Fix branches exiting by true with invariant conditions
Forgot to invert the condition for them.
2020-11-13 15:52:00 +07:00
Max Kazantsev 0a1d394bf3 [NFC] Refactor loop-invariant getters to return Optional 2020-11-13 15:03:10 +07:00
Max Kazantsev 77efb73c67 [IndVars] Replace checks with invariants if we cannot remove them
If we cannot prove that the check is trivially true, but can prove that it either
fails on the 1st iteration or never fails, we can replace it with first iteration check.

Differential Revision: https://reviews.llvm.org/D88527
Reviewed By: skatkov
2020-11-13 12:23:12 +07:00
Max Kazantsev 25755a0159 [NFC] Add flag to disable IV widening in indvar instance
This allows us to have control over IV widening in the pipeline.
2020-11-10 15:10:44 +07:00
Sjoerd Meijer 7eb70158e4 [IndVarSimplify][SimplifyIndVar] Move WidenIV to Utils/SimplifyIndVar. NFCI.
This moves WidenIV from IndVarSimplify to Utils/SimplifyIndVar so that we have
createWideIV available as a generic helper utility. I.e., this is not only
useful in IndVarSimplify, but could be useful for loop transformations. For
example, motivation for this refactoring is the loop flatten transformation: if
induction variables in a loop nest can be widened, we can avoid having to
perform certain overflow checks, enabling this transformation.

Differential Revision: https://reviews.llvm.org/D90421
2020-11-05 16:52:47 +00:00
Max Kazantsev 46b2e85f0f [NFC] Refactor code in IndVars, preparing for further improvement 2020-11-03 15:08:12 +07:00
Max Kazantsev a44b7322a2 [NFC] Split lambda into 2 parts for further reuse 2020-11-03 14:13:55 +07:00
Max Kazantsev f847094c24 [IndVars] Use knowledge about execution on last iteration when removing checks
If we know that some check will not be executed on the last iteration, we can use this
fact to eliminate its check.

Differential Revision: https://reviews.llvm.org/D88210
Reviwed By: ebrevnov
2020-11-03 13:38:58 +07:00
Max Kazantsev bd341bafbf [NFC] Simplify code in IndVars 2020-10-30 17:49:32 +07:00
Max Kazantsev 160a453138 Return "[IndVars] Remove monotonic checks with unknown exit count"
This reverts commit e038b60d91.
This reverts commit a0d84d8031.

This revert was a mistake. The reason of the failures was
"Use uint64_t for branch weights instead of uint32_t"

Differential Revision: https://reviews.llvm.org/D87832
2020-10-28 18:51:40 +07:00
Raphael Isemann e038b60d91 Revert "[IndVars] Remove monotonic checks with unknown exit count"
This reverts commit c6ca26c0bf.
This breaks stage2 builds due to hitting this assert:
```
   Assertion failed: (WeightSum <= UINT32_MAX && "Expected weights to scale down to 32 bits"), function calcMetadataWeights
```
when compiling AArch64RegisterBankInfo.cpp in LLVM.
2020-10-27 15:31:37 +01:00
Raphael Isemann a0d84d8031 Revert "[NFC] Factor away lambda's redundant parameter"
This reverts commit fdc845b361.
It seems to be a follow-up to c6372b3fb495 which will be reverted.
2020-10-27 15:30:52 +01:00
Max Kazantsev fdc845b361 [NFC] Factor away lambda's redundant parameter 2020-10-27 12:56:52 +07:00
Max Kazantsev c6ca26c0bf [IndVars] Remove monotonic checks with unknown exit count
Even if the exact exit count is unknown, we can still prove that this
exit will not be taken. If we can prove that the predicate is monotonic,
fulfilled on first & last iteration, and no overflow happened in between,
then the check can be removed.

Differential Revision: https://reviews.llvm.org/D87832
Reviewed By: apilipenko
2020-10-27 11:35:16 +07:00
Max Kazantsev bfabd7878b Fix broken build after previous commit 2020-10-26 14:55:46 +07:00
Max Kazantsev cdccc82f48 [NFC] Remove unused funciton param 2020-10-26 14:53:22 +07:00
Max Kazantsev 4b5e848bef [NFC] Factor out common code into lambda for further improvement 2020-10-26 14:50:45 +07:00
Max Kazantsev c019099053 [IndVars] Use contextual knowledge when proving trivial conds
No exact example where it would help, but it's a generally a more
powerful way to prove predicates.
2020-10-26 13:48:32 +07:00
Max Kazantsev 6e574abf61 [SCEV][NFC] Cache symbolic max exit count
We want to have a caching version of symbolic BE exit count
rather than recompute it every time we need it.

Differential Revision: https://reviews.llvm.org/D89954
Reviewed By: nikic, efriedma
2020-10-23 12:29:37 +07:00
Benjamin Kramer b740899c50 [Indvars][NFCI] Simplify assertion.
This should be semantically identical. Also avoids unused variable
warnings in Release builds.
2020-10-16 19:58:55 +02:00
Max Kazantsev 0857029011 [Indvars][NFC] Merge two functions together
Logic of widenWithVariantUse is split into check and transform
part, unlike any other transform in IndVars. We want to pass some
extra flags from analysis to transform part and standartize
the code at once, so merging them together.
2020-10-16 19:21:57 +07:00
Max Kazantsev bb39372e5e [Indvars][NFCI] Remove meaningless restrictive code in IndVars
Variable ExtendOperExpr only exists to check whether it is a SCEV ext.
We create it as SCEV ext right here, so semantically this check is
trivially true. In theory, it may fail if SCEV is smart enough and can
simplify the expression. However, no matter whether it is an ext or not,
we never use this fact for further reasoning. So this code is currently
useless and in theory may become harmful with SCEV's development.

We do not expect any behavior changes with removing it. If it caused
negative changes, the patch should be reverted.
2020-10-16 18:04:31 +07:00
Max Kazantsev 0ee0c7dcc3 [Indvars][NFC] Remove duplicating checks
Some facts have already been checked in widenWithVariantUse and then
checked again in widenWithVariantUseCodegen. The latter is redundant,
we can replace it with asserts.
2020-10-16 17:35:14 +07:00
Max Kazantsev 225df71951 [NFC] Add option to disable IV widening if needed
IV widening is sometimes a strictly harmful transform (some examples
of this are shown in tests 11, 12 in widen-loop-comp.ll). One of the
reasons of this is that sometimes SCEV fails to prove some facts after
part of guards has been widened.

Though each single such case looks like a bug that can be addressed,
it seems that disabling of IV widening may be profitable in some cases.
We want to have an option to do so. By default, existing behavior is
preserved and IV widening is on.
2020-10-09 18:32:03 +07:00
Max Kazantsev fba42aea43 [NFC] Use getZero instead of getConstant(0) 2020-10-07 13:53:36 +07:00
Max Kazantsev e862e78b63 [NFC] Use assert instead of checking the guaranteed condition
From preconditions it is known that either A dominates B or
B dominates A. If A does not dominate B, we do not really need
to check it. Assert should be enough. Should save some compile
time.
2020-09-29 11:38:45 +07:00
Max Kazantsev d266fd960e [IndVars] Remove exiting conditions that are trivially true/false
When removing exiting loop conditions, we only consider checks for
which we know the exact exit count. We could also eliminate checks for
which the condition is always true/false.

Differential Revision: https://reviews.llvm.org/D87344
Reviewed By: lebedev.ri, reames
2020-09-29 11:35:32 +07:00
Juneyoung Lee 25ce1e0497 [ValueTracking] Add UndefOrPoison/Poison-only version of relevant functions
This patch adds isGuaranteedNotToBePoison and programUndefinedIfUndefOrPoison.

isGuaranteedNotToBePoison will be used at D75808. The latter function is used at isGuaranteedNotToBePoison.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D84242
2020-09-09 20:00:26 +09:00
Max Kazantsev 795e4ee9d2 [NFC] Move functon from IndVarSimplify to SCEV
This function can be reused in other places.

Differential Revision: https://reviews.llvm.org/D87274
Reviewed By: fhahn, lebedev.ri
2020-09-09 11:20:59 +07:00
Chen Zheng 6d247f980d [SCEV][IndVarSimplify] insert point should not be block front.
Recommit after removing the unused cast instructions.

Differential Revision:  https://reviews.llvm.org/D80975
2020-07-17 22:25:10 -04:00
Chen Zheng c86c1e972d [IndVarSimplify] Uniformly use emplace_back for DeadInsts, nfc 2020-07-15 02:48:09 -04:00
serge-sans-paille 1cd1c1d62e Revert "[SCEV][IndVarSimplify] insert point should not be block front."
This reverts commit f1efb8bb4b.

Reverted because it doesn't correctly update the pass return status, see

http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-debian/builds/9441/steps/test-check-all/logs/FAIL%3A%20LLVM%3A%3Awiden-i32-i8ptr.ll
2020-07-14 14:24:26 +02:00
Chen Zheng f1efb8bb4b [SCEV][IndVarSimplify] insert point should not be block front.
The block front may be a PHI node, inserting a cast instructions like
BitCast, PtrToInt, IntToPtr among PHIs is not right.

Reviewed By: lebedev.ri

Differential Revision:  https://reviews.llvm.org/D80975
2020-07-09 21:56:57 -04:00
Florian Hahn bcbd26bfe6 [SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC).
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.

This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.

The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.

Reviewers: sanjoy.google, efriedma, reames

Reviewed By: sanjoy.google

Differential Revision: https://reviews.llvm.org/D71537
2020-05-20 10:53:40 +01:00
Juneyoung Lee aca335955c [ValueTracking] Let analyses assume a value cannot be partially poison
Summary:
This is RFC for fixes in poison-related functions of ValueTracking.
These functions assume that a value can be poison bitwisely, but the semantics
of bitwise poison is not clear at the moment.
Allowing a value to have bitwise poison adds complexity to reasoning about
correctness of optimizations.

This patch makes the analysis functions simply assume that a value is
either fully poison or not, which has been used to understand the correctness
of a few previous optimizations.
The bitwise poison semantics seems to be only used by these functions as well.

In terms of implementation, using value-wise poison concept makes existing
functions do more precise analysis, which is what this patch contains.

Reviewers: spatel, lebedev.ri, jdoerfert, reames, nikic, nlopes, regehr

Reviewed By: nikic

Subscribers: fhahn, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78503
2020-04-23 08:08:53 +09:00
Juneyoung Lee 5ceef26350 Revert "RFC: [ValueTracking] Let analyses assume a value cannot be partially poison"
This reverts commit 80faa8c3af.
2020-04-23 08:07:09 +09:00
Juneyoung Lee 80faa8c3af RFC: [ValueTracking] Let analyses assume a value cannot be partially poison
Summary:
This is RFC for fixes in poison-related functions of ValueTracking.
These functions assume that a value can be poison bitwisely, but the semantics
of bitwise poison is not clear at the moment.
Allowing a value to have bitwise poison adds complexity to reasoning about
correctness of optimizations.

This patch makes the analysis functions simply assume that a value is
either fully poison or not, which has been used to understand the correctness
of a few previous optimizations.
The bitwise poison semantics seems to be only used by these functions as well.

In terms of implementation, using value-wise poison concept makes existing
functions do more precise analysis, which is what this patch contains.

Reviewers: spatel, lebedev.ri, jdoerfert, reames, nikic, nlopes, regehr

Reviewed By: nikic

Subscribers: fhahn, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78503
2020-04-23 07:57:12 +09:00
Zhongduo Lin eae228a292 [IndVarSimplify] Extend previous special case for load use instruction to any narrow type loop variant to avoid extra trunc instruction
Summary:
The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
will not work when:
   1) SCEV traces back to an instruction inside the loop that SCEV can not
expand, eg. add %indvar, (load %addr)
   2) SCEV finds a loop variant, eg. add %indvar, %loopvariant

While SCEV fails to avoid trunc, we can still try to use instruction
combining approach to prove trunc is not required. This can be further
extended with other instruction combining checks, but for now we handle the
following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
```
Src:
  %c = sub nsw %b, %indvar
  %d = sext %c to i64
Dst:
  %indvar.ext1 = sext %indvar to i64
  %m = sext %b to i64
  %d = sub nsw i64 %m, %indvar.ext1
```
Therefore, as long as the result of add/sub/mul is extended to wide type with
right extension and overflow wrap combination, no
trunc is required regardless of how %b is generated. This pattern is common
when calculating address in 64 bit architecture.

Note that this patch reuse almost all the code from D49151 by @az:
https://reviews.llvm.org/D49151

It extends it by providing proof of why trunc is unnecessary in more general case,
it should also resolve some of the concerns from the following discussion with @reames.

http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180910/585945.html

Reviewers: sanjoy, efriedma, sebpop, reames, az, javed.absar, amehsan

Reviewed By: az, amehsan

Subscribers: hiraditya, llvm-commits, amehsan, reames, az

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73059
2020-03-05 16:27:59 -05:00
Eli Friedman b299926453 [IndVars] Fix sort comparator.
std::sort will compare an element to itself in some cases.  We should
not crash if this happens.

Differential Revision: https://reviews.llvm.org/D75000
2020-02-27 17:25:18 -08:00
Roman Lebedev 400ceda425
[SCEV][IndVars] Always provide insertion point to the SCEVExpander::isHighCostExpansion()
Summary: This addresses the `llvm/test/Transforms/IndVarSimplify/elim-extend.ll` `@nestedIV` regression from D73728

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73777
2020-02-25 23:05:59 +03:00
Roman Lebedev b99c91a087
[NFC][SCEV] Piping to pass new SCEVCheapExpansionBudget option into SCEVExpander::isHighCostExpansionHelper()
Summary:
In future patches`SCEVExpander::isHighCostExpansionHelper()` will respect the budget allocated by performing TTI cost modelling.
This is a fully NFC patch to make things reviewable.

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, zzheng, javed.absar, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73705
2020-02-25 23:05:57 +03:00
Roman Lebedev 0789f28048
[NFC][SCEV] Piping to pass TTI into SCEVExpander::isHighCostExpansionHelper()
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73704
2020-02-25 23:05:56 +03:00
Michael Kruse e4d20ec8ad [IndVarSimply] Fix assert/release build difference.
In builds with assertions enabled (!NDEBUG), IndVarSimplify does an
additional query to ScalarEvolution which may change future SCEV queries
since it fills the internal cache differently. The result is actually
only used with the -verify-indvars command line option. We fix the issue
by only calling SE->getBackedgeTakenCount(L) if -verify-indvars is
enabled such that only -verify-indvars shows the behavior, but not debug
builds themselves. Also add a remark to the description of
-verify-indvars about this behavior.

Fixes llvm.org/PR44815

Differential Revision: https://reviews.llvm.org/D74810
2020-02-19 14:36:22 -06:00
Alina Sbirlea a0f627d584 [IndVarSimplify] Fix for MemorySSA preserve. 2020-01-23 11:06:16 -08:00
Jonas Devlieghere cf2b498d28 [llvm/Transforms] Fix warning: private field 'MSSA' is not used 2020-01-22 18:07:53 -08:00
Alina Sbirlea adc4faf532 [IndVarSimplify] Teach IndVarSimplify to preserve MemorySSA. 2020-01-22 16:33:17 -08:00
Alina Sbirlea b5b6126d97 [IndVarSimplify] Cleanup spaces and reduce variable scope [NFCI]
Minor clean-ups + clang-format.
2020-01-22 15:32:20 -08:00
Sjoerd Meijer 93175a5caa [IndVarSimplify][LoopUtils] rewriteLoopExitValues. NFCI
This moves `rewriteLoopExitValues()` from IndVarSimplify to LoopUtils thus
making it a generic loop utility function.  This allows to rewrite loop exit
values by just calling this function without running the whole IndVarSimplify
pass.

We use this in D72714 to rematerialise the iteration count in exit blocks, so
that we can clean-up loop update expressions inside the hardware-loops later.

Differential Revision: https://reviews.llvm.org/D72602
2020-01-20 09:05:00 +00:00
Zhongduo Lin 34ba96a3d4 [NFC][IndVarSimplify] remove duplicate code in widenWithVariantLoadUseCodegen.
Summary: Duplicate code in widenWithVariantLoadUseCodegen is removed and also use assert to check unknown extension type as it should be filtered out by the pre condition check before calling this function.

Reviewers: az, sanjoy, sebpop, efriedma, javed.absar, sanjoy.google

Reviewed By: efriedma

Subscribers: hiraditya, llvm-commits, amehsan

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72652
2020-01-15 16:27:58 -05:00
Florian Hahn b8a3c34eee Revert "[SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC)."
This reverts commit 51ef53f3bd, as it
breaks some bots.
2020-01-04 18:44:38 +00:00
Florian Hahn 51ef53f3bd [SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC).
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.

Reviewers: sanjoy.google, efriedma, reames

Reviewed By: sanjoy.google

Differential Revision: https://reviews.llvm.org/D71537
2020-01-04 18:29:35 +00:00
Reid Kleckner 05da2fe521 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00
Daniil Suchkov 7b9f5401a6 [NFC][IndVarS] Adjust a comment
(test commit)
2019-11-08 14:51:36 +07:00
Philip Reames 8748be7750 [LoopPred] Enable new transformation by default
The basic idea of the transform is to convert variant loop exit conditions into invariant exit conditions by changing the iteration on which the exit is taken when we know that the trip count is unobservable.  See the original patch which introduced the code for a more complete explanation.

The individual parts of this have been reviewed, the result has been fuzzed, and then further analyzed by hand, but despite all of that, I will not be suprised to see breakage here.  If you see problems, please don't hesitate to revert - though please do provide a test case.  The most likely class of issues are latent SCEV bugs and without a reduced test case, I'll be essentially stuck on reducing them.

(Note: A bunch of tests were opted out of the new transform to preserve coverage.  That landed in a previous commit to simplify revert cycles if they turn out to be needed.)
2019-11-06 15:41:57 -08:00
Philip Reames 9bfa5ab3d1 [LoopPred] Fix two subtle issues found by inspection
This patch fixes two issues noticed by inspection when going to enable the loop predication code in IndVarSimplify.

Issue 1 - Both the LoopPredication transform, and the already on by default optimizeLoopExits transform, modify the exit count of the exits they modify. (either to 0 or Infinity) Looking at the code more closely, this was not reflected into SCEV and we were instead running later transforms with incorrect SCEVs. Fixing this requires forgetting the loop, weakening a too strong assert, and updating SCEV to not pessimize results when a loop is provable untaken. I haven't been able to find a test case to demonstrate the miscompile.

Issue 2 - For modules without a data layout, we can end up with unsized pointer typed exit counts. Just bail out of this case.

I think these are the last two issues which need addressed before we enable this by default. The code has already survived a decent amount of fuzzing without revealing either of the above.

Differential Revision: https://reviews.llvm.org/D69695
2019-11-06 14:04:45 -08:00
Philip Reames 34f68253ca [SCEV] Expose and use maximum constant exit counts for individual loop exits
We were already going to all of the trouble of computing maximum constant exit counts for each loop exit, we might as well expose them through the API.  The change in IndVars is mostly to demonstrate that the wired up code works, but it als very slightly strengthens the transform.  The strengthened case is rather narrow though: it requires one exactly analyzeable exit, one imprecisely analyzeable exit (with the upper bound less than the precise one), and one unanalyzeable exit.  I coudn't construct a reasonably stable test case.

This does increase the memory usage of the BackedgeTakenCount by a factor of 2 in the worst case.

I also noticed the loop in IndVars is O(#Exits ^ 2).  This doesn't change with this patch.  A future patch will cache this result inside of SCEV to avoid requering.
2019-10-24 19:07:33 -07:00
Philip Reames 9b8dd00403 Test commit access via git 2019-10-24 15:10:17 -07:00
Simon Pilgrim 0c5df8dbe5 IndVarSimplify - silence static analyzer dyn_cast<> null dereference warning. NFCI.
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.

llvm-svn: 375426
2019-10-21 17:15:05 +00:00
Philip Reames e884843d78 [IndVars] Add a todo to reflect a further oppurtunity identified in D69009
Nikita pointed out an oppurtunity, might as well document it in the code.

llvm-svn: 375380
2019-10-20 23:44:01 +00:00
Philip Reames 8cbcd2f484 [IndVars] Eliminate loop exits with equivalent exit counts
We can end up with two loop exits whose exit counts are equivalent, but whose textual representation is different and non-obvious. For the sub-case where we have a series of exits which dominate one another (common), eliminate any exits which would iterate *after* a previous exit on the exiting iteration.

As noted in the TODO being removed, I'd always thought this was a good idea, but I've now seen this in a real workload as well.

Interestingly, in review, Nikita pointed out there's let another oppurtunity to leverage SCEV's reasoning.  If we kept track of the min of dominanting exits so far, we could discharge exits with EC >= MDE.  This is less powerful than the existing transform (since later exits aren't considered), but potentially more powerful for any case where SCEV can prove a >= b, but neither a == b or a > b.  I don't have an example to illustrate that oppurtunity, but won't be suprised if we find one and return to handle that case as well.  

Differential Revision: https://reviews.llvm.org/D69009

llvm-svn: 375379
2019-10-20 23:38:02 +00:00
Philip Reames 8eaa5b9aba [IndVars] Factor out some common code into a utility function
As requested in review of D69009

llvm-svn: 375191
2019-10-17 23:49:46 +00:00
Philip Reames e51d57d64a [IndVars] Split loop predication out of optimizeLoopExits [NFC]
In the process of writing D69009, I realized we have two distinct sets of invariants within this single function, and basically no shared logic.  The optimize loop exit transforms (including the new one in D69009) only care about *analyzeable* exits.  Loop predication, on the other hand, has to reason about *all* exits.  At the moment, we have the property (due to the requirement for an exact btc) that all exits are analyzeable, but that will likely change in the future as we add widenable condition support.

llvm-svn: 375138
2019-10-17 17:29:07 +00:00
Philip Reames 918d779d90 [IndVars] Factor out a helper function for readability [NFC]
llvm-svn: 375133
2019-10-17 16:55:34 +00:00
Philip Reames d4346584fa [IndVars] Fix a miscompile in off-by-default loop predication implementation
The problem is that we can have two loop exits, 'a' and 'b', where 'a' and 'b' would exit at the same iteration, 'a' precedes 'b' along some path, and 'b' is predicated while 'a' is not. In this case (see the previously submitted test case), we causing the loop to exit through 'b' whereas it should have exited through 'a'.

This only applies to loop exits where the exit counts are not provably inequal, but that isn't as much of a restriction as it appears. If we could order the exit counts, we'd have already removed one of the two exits. In theory, we might be able to prove inequality w/o ordering, but I didn't really explore that piece. Instead, I went for the obvious restriction and ensured we didn't predicate exits following non-predicateable exits.

Credit goes to Evgeny Brevnov for figuring out the problematic case. Fuzzing probably also found it (failures seen), but due to some silly infrastructure problems I hadn't gotten to the results before Evgeny hand reduced it from a benchmark (he manually enabled the transform). Once this is fixed, I'll try to filter through the fuzzer failures to see if there's anything additional lurking.

Differential Revision https://reviews.llvm.org/D68956

llvm-svn: 375038
2019-10-16 19:58:26 +00:00
Chen Zheng 9806a1d5f9 [ConstantRange] [NFC] replace addWithNoSignedWrap with addWithNoWrap.
llvm-svn: 374016
2019-10-08 03:00:31 +00:00
Jordan Rose fdaa742174 Second attempt to add iterator_range::empty()
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.

https://reviews.llvm.org/D68439

llvm-svn: 373935
2019-10-07 18:14:24 +00:00
Philip Reames 0200626f0b [IndVars] An implementation of loop predication without a need for speculation
This patch implements a variation of a well known techniques for JIT compilers - we have an implementation in tree as LoopPredication - but with an interesting twist. This version does not assume the ability to execute a path which wasn't taken in the original program (such as a guard or widenable.condition intrinsic). The benefit is that this works for arbitrary IR from any frontend (including C/C++/Fortran). The tradeoff is that it's restricted to read only loops without implicit exits.

This builds on SCEV, and can thus eliminate the loop varying portion of the any early exit where all exits are understandable by SCEV. A key advantage is that fixing deficiency exposed in SCEV - already found one while writing test cases - will also benefit all of full redundancy elimination (and most other loop transforms).

I haven't seen anything in the literature which quite matches this. Given that, I'm not entirely sure that keeping the name "loop predication" is helpful. Anyone have suggestions for a better name? This is analogous to partial redundancy elimination - since we remove the condition flowing around the backedge - and has some parallels to our existing transforms which try to make conditions invariant in loops.

Factoring wise, I chose to put this in IndVarSimplify since it's a generally applicable to all workloads. I could split this off into it's own pass, but we'd then probably want to add that new pass every place we use IndVars.  One solid argument for splitting it off into it's own pass is that this transform is "too good". It breaks a huge number of existing IndVars test cases as they tend to be simple read only loops.  At the moment, I've opted it off by default, but if we add this to IndVars and enable, we'll have to update around 20 test files to add side effects or disable this transform.

Near term plan is to fuzz this extensively while off by default, reflect and discuss on the factoring issue mentioned just above, and then enable by default.  I also need to give some though to supporting widenable conditions in this framing.

Differential Revision: https://reviews.llvm.org/D67408

llvm-svn: 373351
2019-10-01 17:03:44 +00:00
Alexey Lapshin 49f3c2b604 [Debuginfo] dbg.value points to undef value after Induction Variable Simplification.
Induction Variable Simplification pass does not update dbg.value intrinsic.

Before:

%add = add nuw nsw i32 %ArgIndex.06, 1
call void @llvm.dbg.value(metadata i32 %add, metadata !17, metadata !DIExpression())

After:

%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
call void @llvm.dbg.value(metadata i64 undef, metadata !17, metadata !DIExpression())

There should be:

%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
call void @llvm.dbg.value(metadata i64 %indvars.iv.next, metadata !17, metadata !DIExpression())

Differential Revision: https://reviews.llvm.org/D67770

llvm-svn: 372703
2019-09-24 08:47:03 +00:00
Teresa Johnson 9c27b59cec Change TargetLibraryInfo analysis passes to always require Function
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.

This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.

Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.

There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.

Reviewers: chandlerc, hfinkel

Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66428

llvm-svn: 371284
2019-09-07 03:09:36 +00:00
Philip Reames 2a52583d67 [IndVars] Fix a bug noticed by inspection
We were computing the loop exit value, but not ensuring the addrec belonged to the loop whose exit value we were computing.  I couldn't actually trip this; the test case shows the basic setup which *might* trip this, but none of the variations I've tried actually do.

llvm-svn: 369730
2019-08-23 04:03:23 +00:00
Philip Reames 7b0515176b [SCEV] Rename getMaxBackedgeTakenCount to getConstantMaxBackedgeTakenCount [NFC]
llvm-svn: 368930
2019-08-14 21:58:13 +00:00
Philip Reames 6cca3ad43e [RLEV] Rewrite loop exit values for multiple exit loops w/o overall loop exit count
We already supported rewriting loop exit values for multiple exit loops, but if any of the loop exits were not computable, we gave up on all loop exit values. This patch generalizes the existing code to handle individual computable loop exits where possible.

As discussed in the review, this is a starting point for figuring out a better API.  The code is a bit ugly, but getting it in lets us test as we go.  

Differential Revision: https://reviews.llvm.org/D65544

llvm-svn: 368898
2019-08-14 18:27:57 +00:00
Philip Reames 79c27c9464 Fix a release-only build warning triggered by rL367485
llvm-svn: 367499
2019-08-01 01:16:08 +00:00
Philip Reames f8e7b53657 [IndVars, RLEV] Support rewriting exit values in loops without known exits (prep work)
This is a prepatory patch for future work on support exit value rewriting in loops with a mixture of computable and non-computable exit counts.  The intention is to be "mostly NFC" - i.e. not enable any interesting new transforms - but in practice, there are some small output changes.

The test differences are caused by cases wherewhere getSCEVAtScope can simplify a single entry phi without needing any knowledge of the loop.

llvm-svn: 367485
2019-07-31 21:15:21 +00:00
Philip Reames ea5c94b497 [IndVars] Fix a subtle bug in optimizeLoopExits
The original code failed to account for the fact that one exit can have a pointer exit count without all of them having pointer exit counts.  This could cause two separate bugs:
1) We might exit the loop early, and leave optimizations undone.  This is what triggered the assertion failure in the reported test case.
2) We might optimize one exit, then exit without indicating a change.  This could result in an analysis invalidaton bug if no other transform is done by the rest of indvars.

Note that the pointer exit counts are a really fragile concept.  They show up only when we have a pointer IV w/o a datalayout to provide their size.  It's really questionable to me whether the complexity implied is worth it.

llvm-svn: 366829
2019-07-23 17:45:11 +00:00
Philip Reames 6e1c3bb181 [IndVars] Speculative fix for an assertion failure seen in bots
I don't have an IR sample which is actually failing, but the issue described in the comment is theoretically possible, and should be guarded against even if there's a different root cause for the bot failures.

llvm-svn: 366241
2019-07-16 18:23:49 +00:00
Sterling Augustine 6d75a9e873 The variable "Latch" is only used in an assert, which makes builds that use "-DNDEBUG" fail with unused variable messages.
Summary: Move the logic into the assert itself.

Subscribers: hiraditya, sanjoy, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64654

llvm-svn: 365943
2019-07-12 18:51:08 +00:00
Philip Reames 34495b5533 [IndVars] Use exit count reasoning to discharge obviously untaken exits
Continue in the spirit of D63618, and use exit count reasoning to prove away loop exits which can not be taken since the backedge taken count of the loop as a whole is provably less than the minimal BE count required to take this particular loop exit.

As demonstrated in the newly added tests, this triggers in a number of cases where IndVars was previously unable to discharge obviously redundant exit tests. And some not so obvious ones.

Differential Revision: https://reviews.llvm.org/D63733

llvm-svn: 365920
2019-07-12 17:05:35 +00:00
Philip Reames ea06d63c35 [LFTR] Use SCEVExpander for the pointer limit case instead of manual IR gen
As noted in the test change, this is not trivially NFC, but all of the changes in output are cases where the SCEVExpander form is more canonical/optimal than the hand generation.  

llvm-svn: 365075
2019-07-03 20:03:46 +00:00
Philip Reames 14f1543425 [LFTR] Remove a stray variable shadow *of the same value* [NFC]
llvm-svn: 365072
2019-07-03 19:08:43 +00:00
Philip Reames e7a258c6d9 [LFTR] Style and comment changes to clarify the narrow vs wide bitwidth evaluation behavior [NFC]
llvm-svn: 365071
2019-07-03 19:03:37 +00:00
Philip Reames abc8f344d6 [LFTR] Sink the decision not use truncate scheme for constants into genLoopLimit [NFC]
We might as well just evaluate the constants using SCEV, and having the cases grouped makes the logic slightly easier to read anyway.

llvm-svn: 365070
2019-07-03 18:41:03 +00:00
Philip Reames 4c80281c96 [LFTR] Remove falsely generalized (dead) code [NFC]
llvm-svn: 365067
2019-07-03 18:24:06 +00:00
Philip Reames 83cca94194 [LFTR] Hoist extend expressions outside of loops w/o waiting for LICM
The motivation for this is two fold:
1) Make the output (and thus tests)  a bit more readable to a human trying to understand the result of the transform
2) Reduce spurious diffs in a potential future change to restructure all of this logic to use SCEVExpander (which hoists by default)

llvm-svn: 365066
2019-07-03 18:18:36 +00:00
Nikita Popov 8023c84433 [LFTR] Rephrase getLoopTest into "based-on" check; NFCI
What we want to know here is whether we're already using this value
for the loop condition, so make the query about that. We can extend
this to a more general "based-on" relationship, rather than a direct
icmp use later.

llvm-svn: 364715
2019-06-29 15:12:59 +00:00
Nikita Popov 61a8b62b4c [LFTR] Remove unnecessary latch check; NFCI
The whole indvars pass works on loops in simplified form, so there
is always a unique latch. Convert the condition into an assertion
in needsLFTR (though we also assert this in later LFTR functions).

Additionally update the comment on getLoopTest() now that we are
dealing with multiple exits.

llvm-svn: 364713
2019-06-29 12:41:02 +00:00
Nikita Popov 2d756c4feb [LFTR] Fix post-inc pointer IV with truncated exit count (PR41998)
Fixes https://bugs.llvm.org/show_bug.cgi?id=41998. Usually when we
have a truncated exit count we'll truncate the IV when comparing
against the limit, in which case exit count overflow in post-inc
form doesn't matter. However, for pointer IVs we don't do that, so
we have to be careful about incrementing the IV in the wide type.

I'm fixing this by removing the IVCount variable (which was
ExitCount or ExitCount+1) and replacing it with a UsePostInc flag,
and then moving the actual limit adjustment to the individual cases
(which are: pointer IV where we add to the wide type, integer IV
where we add to the narrow type, and constant integer IV where we
add to the wide type).

Differential Revision: https://reviews.llvm.org/D63686

llvm-svn: 364709
2019-06-29 09:24:12 +00:00
Philip Reames 1504b6ee7e [IndVars] Remove a bit of manual constant folding [NFC]
SCEV is more than capable of folding (add x, trunc(0)) to x.  

llvm-svn: 364693
2019-06-29 00:19:31 +00:00
Philip Reames 03b2e2d986 [IndVars] Kill a redundant bit of debug output
llvm-svn: 364449
2019-06-26 17:19:09 +00:00
Philip Reames c42a357178 [LFTR] Adjust debug output to include extensions (if any)
llvm-svn: 364346
2019-06-25 20:14:08 +00:00
Sanjoy Das e2291f5af9 Fix typo in comment; NFC
llvm-svn: 364159
2019-06-23 19:22:13 +00:00
Philip Reames d22a2a9a72 [IndVars] Remove dead instructions after folding trivial loop exit
In rL364135, I taught IndVars to fold exiting branches in loops with a zero backedge taken count (i.e. loops that only run one iteration).  This extends that to eliminate the dead comparison left around.  

llvm-svn: 364155
2019-06-23 17:06:57 +00:00
Philip Reames 8deb84c8ef Exploit a zero LoopExit count to eliminate loop exits
This turned out to be surprisingly effective. I was originally doing this just for completeness sake, but it seems like there are a lot of cases where SCEV's exit count reasoning is stronger than it's isKnownPredicate reasoning.

Once this is in, I'm thinking about trying to build on the same infrastructure to eliminate provably untaken checks. There may be something generally interesting here.

Differential Revision: https://reviews.llvm.org/D63618

llvm-svn: 364135
2019-06-22 17:54:25 +00:00
Philip Reames a7fd8a806f [LFTR] Fix a (latent?) bug related to nested loops
I can't actually come up with a test case this triggers on without an out of tree change, but in theory, it's a bug in the recently added multiple exit LFTR support.  The root issue is that an exiting block common to two loops can (in theory) have computable exit counts for both loops.  Rewriting the exit of an inner loop in terms of the outer loops IV would cause the inner loop to either a) run forever, or b) terminate on the first iteration.

In practice, we appear to get lucky and not have the exit count computable for the outer loop, except when it's trivially zero.  Given we bail on zero exit counts, we don't appear to ever trigger this.  But I can't come up with a reason we *can't* compute an exit count for the outer loop on the common exiting block, so this may very well be triggering in some cases.

llvm-svn: 363964
2019-06-20 18:45:06 +00:00
Philip Reames eda1ba65ca LFTR for multiple exit loops
Teach IndVarSimply's LinearFunctionTestReplace transform to handle multiple exit loops. LFTR does two key things 1) it rewrites (all) exit tests in terms of a common IV potentially eliminating one in the process and 2) it moves any offset/indexing/f(i) style logic out of the loop.

This turns out to actually be pretty easy to implement. SCEV already has all the information we need to know what the backedge taken count is for each individual exit. (We use that when computing the BE taken count for the loop as a whole.) We basically just need to iterate through the exiting blocks and apply the existing logic with the exit specific BE taken count. (The previously landed NFC makes this super obvious.)

I chose to go ahead and apply this to all loop exits instead of only latch exits as originally proposed. After reviewing other passes, the only case I could find where LFTR form was harmful was LoopPredication. I've fixed the latch case, and guards aren't LFTRed anyways. We'll have some more work to do on the way towards widenable_conditions, but that's easily deferred.

I do want to note that I added one bit after the review.  When running tests, I saw a new failure (no idea why didn't see previously) which pointed out LFTR can rewrite a constant condition back to a loop varying one.  This was theoretically possible with a single exit, but the zero case covered it in practice.  With multiple exits, we saw this happening in practice for the eliminate-comparison.ll test case because we'd compute a ExitCount for one of the exits which was guaranteed to never actually be reached.  Since LFTR ran after simplifyAndExtend, we'd immediately turn around and undo the simplication work we'd just done.  The solution seemed obvious, so I didn't bother with another round of review.

Differential Revision: https://reviews.llvm.org/D62625

llvm-svn: 363883
2019-06-19 21:58:25 +00:00
Philip Reames ce53e2226c [LFTR] Stylistic cleanup as suggested in last review comment of D62939 [NFC]
(Resumbit of r363292 which was reverted along w/an earlier patch)

llvm-svn: 363877
2019-06-19 20:45:57 +00:00
Philip Reames f8104f01e6 [LFTR] Rename variable to minimize confusion [NFC]
(Recommit of r363293 which was reverted when a dependent patch was.)

As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop. A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.

llvm-svn: 363875
2019-06-19 20:41:28 +00:00
Philip Reames 44475363e8 Teach getSCEVAtScope how to handle loop phis w/invariant operands in loops w/taken backedges
This patch really contains two pieces:
    Teach SCEV how to fold a phi in the header of a loop to the value on the backedge when a) the backedge is known to execute at least once, and b) the value is safe to use globally within the scope dominated by the original phi.
    Teach IndVarSimplify's rewriteLoopExitValues to allow loop invariant expressions which already exist (and thus don't need new computation inserted) even in loops where we can't optimize away other uses.

Differential Revision: https://reviews.llvm.org/D63224

llvm-svn: 363619
2019-06-17 21:06:17 +00:00
Philip Reames fe8bd96ebd Fix a bug w/inbounds invalidation in LFTR (recommit)
Recommit r363289 with a bug fix for crash identified in pr42279.  Issue was that a loop exit test does not have to be an icmp, leading to a null dereference crash when new logic was exercised for that case.  Test case previously committed in r363601.

Original commit comment follows:

This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.

The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.

As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.

(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)

Differential Revision: https://reviews.llvm.org/D62939

llvm-svn: 363613
2019-06-17 20:32:22 +00:00
Florian Hahn dcdd12b68c Revert Fix a bug w/inbounds invalidation in LFTR
Reverting because it breaks a green dragon build:
    http://green.lab.llvm.org/green/job/clang-stage2-Rthinlto/18208

This reverts r363289 (git commit eb88badff9)

llvm-svn: 363427
2019-06-14 17:23:09 +00:00