Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
Summary:
While walking the use chain for identifying rematerializable values in RS4GC,
add the case where the current value and base value are the same PHI nodes.
This will aid rematerialization of geps and casts instead of relocating.
Reviewers: sanjoy, reames, igor
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23920
llvm-svn: 279975
Currently we consider that each constant has itself as a base value. I.e "base(const) = const".
This introduces couple of problems when we are trying to avoid reporting constants in statepoint live sets:
1. When querying "base( phi(const1, const2) )" we will get "phi(const1, const2)" as a base pointer. Since
it's not a constant we will record it in a stack map. However on practice we don't want this to happen
(constant are never relocated).
2. base( phi(const, gc ptr) ) = phi( const, base(gc ptr) ). This particular case imposes challenge on our
runtime - we don't expect to see constant base pointers other than null. This problems can be avoided
by treating all constant as if they were derived from null pointer base. I.e in a first case we will
not include constant pointer in a stack map at all. In a second case we will get "phi(null, base(gc ptr))"
as a base pointer which is a lot more convenient.
Differential Revision: http://reviews.llvm.org/D20584
llvm-svn: 270993
This is assertion is no longer necessary since we never record
constants in the live set anyway. (They are never recorded in
the initial live set, and constant bases are removed near line 2119)
Differential Revision: http://reviews.llvm.org/D20293
llvm-svn: 269764
Goal of this change is to guarantee stable ordering of the statepoint arguments and other
newly inserted values such as gc.relocates. Previously we had explicit sorting in a couple
of places. However for unnamed values ordering was partial and overall we didn't have any
strong invariant regarding it. This change switches all data structures to use SetVector's
and MapVector's which provide possibility for deterministic iteration over them.
Explicit sorting is now redundant and was removed.
Differential Revision: http://reviews.llvm.org/D19669
llvm-svn: 268502
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
llvm-svn: 268050
Don't emit a gc.result for a statepoint lowered from
@llvm.experimental.deoptimize since the call into __llvm_deoptimize is
effectively noreturn. Instead follow the corresponding gc.statepoint
with an "unreachable".
llvm-svn: 265485
This changes RS4GC to lower calls to ``@llvm.experimental.deoptimize``
to gc.statepoints wrapping ``__llvm_deoptimize``, and changes
``callsGCLeafFunction`` to recognize ``@llvm.experimental.deoptimize``
as a non GC leaf function.
I've had to hard code the ``"__llvm_deoptimize"`` name in
RewriteStatepointsForGC; since ``TargetLibraryInfo`` is available only
during codegen. This isn't without precedent in the codebase, so I'm
not overtly concerned.
llvm-svn: 264456
This splits out the logic that maps the `"statepoint-id"` attribute into
the actual statepoint ID, and the `"statepoint-num-patch-bytes"`
attribute into the number of patchable bytes the statpeoint is lowered
into. The new home of this logic is in IR/Statepoint.cpp, and this
refactoring will support similar functionality when lowering calls with
deopt operand bundles in the future.
llvm-svn: 263685
This flag was part of a migration to a new means of handling vectors-of-points which was described in the llvm-dev thread "FYI: Relocating vector of pointers". The old code path has been off by default for a while without complaints, so time to cleanup.
llvm-svn: 261569
This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 12575.
As pointed out in pr25846, this code suffers from a memory corruption bug. Since I'm (empirically) not going to get back to this any time soon, simply reverting the problematic change is the right answer.
llvm-svn: 261565
Summary:
Passing the rematerialized values map to insertRematerializationStores by
value looks to be a simple oversight; update it to pass by reference.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16911
llvm-svn: 259867
- Locally declare struct, and call it BaseDerivedPair
- Use a lambda to compare, instead of a singleton with uninitialized
fields
- Add a constructor to BaseDerivedPair and use SmallVector::emplace_back
llvm-svn: 259208
The full diff for the test directory may be hard to read because of the
filename clash; so here's all that happened as far as the tests are
concerned:
```
cd test/Transforms/RewriteStatepointsForGC
git rm *ll
git mv deopt-bundles/* ./
rmdir deopt-bundles
find . -name '*.ll' | xargs gsed -i 's/-rs4gc-use-deopt-bundles //g'
```
llvm-svn: 259129
Summary:
This adds a new kind of operand bundle to LLVM denoted by the
`"gc-transition"` tag. Inputs to `"gc-transition"` operand bundle are
lowered into the "transition args" section of `gc.statepoint` by
`RewriteStatepointsForGC`.
This removes the last bit of functionality that was unsupported in the
deopt bundle based code path in `RewriteStatepointsForGC`.
Reviewers: pgavlin, JosephTremoulet, reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16342
llvm-svn: 258338
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.
GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Reviewers: mjacob, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16275
llvm-svn: 258145
This commit changes the default on our lowering of vectors-of-pointers from splitting in RS4GC to reporting them in the final stack map. All of the changes to do so are already in place and tested. Assuming no problems are unearthed in the next week, we will be deleting the old code entirely next Monday.
llvm-svn: 258111
Summary:
This is analogous to r256079, which removed an overly strong assertion, and
r256812, which simplified the code by replacing three conditionals by one.
Reviewers: reames
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D16019
llvm-svn: 257250
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
This remove the need for locking when deleting a function.
Differential Revision: http://reviews.llvm.org/D15988
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 257139
At the moment, this is essentially a diangostic option so that I can start collecting failing test cases, but we will eventually migrate to removing the vector splitting code entirely.
llvm-svn: 257015
Summary:
Previously there were three conditionals, checking for global
variables, undef values and everything constant except these two, all three
returning the same value. This commit replaces them by one conditional.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15818
llvm-svn: 256812
Summary:
This commit renames GCRelocateOperands to GCRelocateInst and makes it an
intrinsic wrapper, similar to e.g. MemCpyInst. Also, all users of
GCRelocateOperands were changed to use the new intrinsic wrapper instead.
Reviewers: sanjoy, reames
Subscribers: reames, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15762
llvm-svn: 256811
Summary:
Previously, only the outer (last) bitcast was rematerialized, resulting in a
use of the unrelocated inner (first) bitcast after the statepoint. See the
test case for an example.
Reviewers: igor-laevsky, reames
Subscribers: reames, alex, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15789
llvm-svn: 256520
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint.
Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob
Subscribers: reames, mjacob, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15662
llvm-svn: 256443
Reasons:
1) The existing form was a form of false generality. None of the implemented GCStrategies use anything other than a type. Its becoming more and more clear we're going to need some type of strong GC pointer in the type system and we shouldn't pretend otherwise at this point.
2) The API was awkward when applied to vectors-of-pointers. The old one could have been made to work, but calling isGCManagedPointer(Ty->getScalarType()) is much cleaner than the Value alternatives.
3) The rewriting implementation effectively assumes the type based predicate as well. We should be consistent.
llvm-svn: 256312
Previously, "%" + name of the value was printed for each derived and base
pointer. This is correct for instructions, but wrong for e.g. globals.
llvm-svn: 256305
Summary:
These were deprecated 11 months ago when a generic
llvm.experimental.gc.result intrinsic, which works for all types, was added.
Reviewers: sanjoy, reames
Subscribers: sanjoy, chenli, llvm-commits
Differential Revision: http://reviews.llvm.org/D15719
llvm-svn: 256262
Summary:
Previously, RS4GC crashed in CreateGCRelocates() because it assumed
that every base is also in the array of live variables, which isn't true if a
live variable has a constant base.
This change fixes the crash by making sure CreateGCRelocates() won't try to
relocate a live variable with a constant base. This would be unnecessary
anyway because anything with a constant base won't move.
Reviewers: reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15556
llvm-svn: 256252
As shown by the included test case, it's reasonable to end up with constant references during base pointer calculation. The code actually handled this case just fine, we only had the assert to help isolate problems under the belief that constant references shouldn't be present in IR generated by managed frontends. This turned out to be wrong on two fronts: 1) Manual Jacobs is working on a language with constant references, and b) we found a case where the optimizer does create them in practice.
llvm-svn: 256079
Inspired by the bug reported in 25846. Whatever we end up doing about that one, the value handle change is a generally good one since it will help catch this type of mistake more quickly.
Patch by: Manuel Jacob
llvm-svn: 255984
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:
- The APIs have access to pretty well any Pass state they want, so
it's hard to tell what they may or may not do.
- Other APIs have copied these and pass around a `Pass *` even though
they don't even use it. Some of these just hand a nullptr to the API
since the callers don't even have a pass available.
- Passes in the new pass manager don't work like the current ones, so
the APIs can't be used as is there.
Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.
llvm-svn: 255669
We should remove noalias along with dereference and dereference_or_null attributes
because statepoint could potentially touch the entire heap including noalias objects.
Differential Revision: http://reviews.llvm.org/D14032
llvm-svn: 251333
`normalizeForInvokeSafepoint` in RewriteStatepointsForGC.cpp, as it is
written today, deals with `gc.relocate` and `gc.result` uses of a
statepoint equally well. This change documents this fact and adds a
test case.
There is no functional change here -- only documentation of existing
functionality.
llvm-svn: 250784
The `"statepoint-id"` and `"statepoint-num-patch-bytes"` attributes are
used solely to determine properties of the `gc.statepoint` being
created. Once the `gc.statepoint` is in place, these should be removed.
llvm-svn: 250491
Summary:
This is a step towards using operand bundles to carry deopt state till
RewriteStatepointsForGC. The change adds a flag to
RewriteStatepointsForGC that teaches it to pick up deopt state from a
`"deopt"` operand bundle attached to the `call` or `invoke` it is
wrapping.
The command line flag added, `-rs4gc-use-deopt-bundles`, will only exist
for a short while. Once we are able to pipe deopt bundle state through
the full optimization pipeline without problems, we will "constant fold"
`-rs4gc-use-deopt-bundles` to `true`.
Reviewers: swaroop.sridhar, reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13372
llvm-svn: 250489
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
Summary:
These non-semantic changes will help make a later change adding
support for deopt operand bundles more streamlined.
Reviewers: reames, swaroop.sridhar
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13491
llvm-svn: 249779
Summary: Use `const auto &` instead of `auto` in `makeStatepointExplicit`.
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13454
llvm-svn: 249776
I don't think this assert adds much value, and removing it and related
variables avoids an "unused variable" warning in release builds.
llvm-svn: 249511
Summary:
A series of cosmetic cleanup changes to RewriteStatepointsForGC:
- Rename variables to LLVM style
- Remove some redundant asserts
- Remove an unsued `Pass *` parameter
- Remove unnecessary variables
- Use C++11 idioms where applicable
- Pass CallSite by value, not reference
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13370
llvm-svn: 249508
The assertion was weaker than it should be and gave the impression we're growing the number of base defining values being considered during the fixed point interation. That's not true. The tighter form of the assert is useful documentation.
llvm-svn: 247221
This change is simply enhancing the existing inference algorithm to handle insertelement instructions by conservatively inserting a new instruction to propagate the vector of associated base pointers. In the process, I'm ripping out the peephole optimizations which mostly helped cover the fact this hadn't been done.
Note that most of the newly inserted nodes will be nearly immediately removed by the post insertion optimization pass introduced in 246718. Arguably, we should be trying harder to avoid the malloc traffic here, but I'd rather get the code correct, then worry about compile time.
Unlike previous extensions of the algorithm to handle more case, I discovered the existing code was causing miscompiles in some cases. In particular, we had an implicit assumption that the peephole covered *all* insert element instructions, so if we had a value directly based on a insert element the peephole didn't cover, we proceeded as if it were a base anyways. Not good. I believe we had the same issue with shufflevector which is why I adjusted the predicate for them as well.
Differential Revision: http://reviews.llvm.org/D12583
llvm-svn: 247210
Previously, the base pointer algorithm wasn't deterministic. The core fixed point was (of course), but we were inserting new nodes and optimizing them in an order which was unspecified and variable. We'd somewhat hacked around this for testing by sorting by value name, but that doesn't solve the general determinism problem.
Instead, we can use the order of traversal over the def/use graph to give us a single consistent ordering. Today, this is a DFS order, but the exact order doesn't mater provided it's deterministic for a given input.
(Q: It is safe to rely on a deterministic order of operands right?)
Note that this only fixes the determinism within a single inference step. The inference step is currently invoked many times in a non-deterministic order. That's a future change in the sequence. :)
Differential Revision: http://reviews.llvm.org/D12640
llvm-svn: 247208
As a first step towards a new implementation of the base pointer inference algorithm, introduce an abstraction for BDVs, strengthen the assertions around them, and rewrite the BDV relation code in terms of the abstraction which includes an explicit notion of whether the BDV is also a base. The later is motivated by the fact we had a bug where insertelement was always assumed to be a base pointer even though the BDV code knew it wasn't. The strengthened assertions in this patch would have caught that bug.
The next step will be to separate the DefiningValueMap into a BDV use list cache (entirely within findBasePointers) and a base pointer cache. Having the former will allow me to use a deterministic visit order when visiting BDVs in the inference algorithm and remove a bunch of ordering related hacks. Before actually doing the last step, I'm likely going to extend the lattice with a 'BaseN' (seen only base inputs) state so that I can kill the post process optimization step.
Phabricator Revision: http://reviews.llvm.org/D12608
llvm-svn: 246809
The visit order being used in the base pointer inference algorithm is currently non-deterministic. When working on http://reviews.llvm.org/D12583, I discovered that we were relying on a peephole optimization to get deterministic ordering in one of the test cases.
This change is intented to let me test and land http://reviews.llvm.org/D12583. The current code will not be long lived. I'm starting to investigate a rewrite of the algorithm which will combine the post-process step into the initial algorithm and make the visit order determistic. Before doing that, I wanted to make sure the existing code was complete and the test were stable. Hopefully, patches should be up for review for the new algorithm this week or early next.
llvm-svn: 246801
Fix a bug in change 246133. I didn't handle the case where we had a cycle in the use graph and could add an instruction we were about to erase back on to the worklist. Oddly, I have not been able to write a small test case for this, even with the AssertingVH added. I have confirmed the basic theory for the fix on a large failing example, but all attempts to reduce that to something appropriate for a test case have failed.
Differential Revision: http://reviews.llvm.org/D12575
llvm-svn: 246718