Unfortunatelly PT_ARM_EXIDX is special. There is no way to create it
from linker scripts, so we have to create it even if PHDRS is used.
This matches bfd and is required for the lld output to survive bfd's strip.
llvm-svn: 288012
This is important for cases like:
.sdata : {
*(.got.plt .got)
...
}
That was not supported before as there was no way to get access to
synthetic sections from script.
More details on review page.
Differential revision: https://reviews.llvm.org/D27040
llvm-svn: 287913
The .ARM.exidx table has an entry for each function with the first entry
giving the start address of the function, the table is sorted in ascending
order of function address. Given a PC value, the unwinder will search the
table for the entry that contains the PC value.
If the table entry happens to be the last, the range of the addresses that
the final unwinding table describes will extend to the end of the address
space. To prevent an incorrect address outside the address range of the
program matching the last entry we follow ld.bfd's example and add a
sentinel EXIDX_CANTUNWIND entry at the end of the table. This gives the
final real table entry an upper bound.
In addition the llvm libunwind unwinder currently depends on the presence
of a sentinel entry (PR31091).
Differential revision: https://reviews.llvm.org/D26977
llvm-svn: 287869
Previously, if a symbol specified by -e or ENTRY() is not found,
we didn't set entry point address. That is incompatible with GNU
because GNU linkers set the first address of .text to entry.
This patch implement that behavior.
llvm-svn: 287836
Offset between beginning of a .got section and _gp symbols used in MIPS
GOT relocations calculations. Usually the expression looks like
VA + Offset - GP, where VA is the .got section address, Offset - offset
of the GOT entry, GP - offset between .got and _gp. Also there two "magic"
symbols _gp_disp and __gnu_local_gp which hold the offset mentioned above.
These symbols might be referenced by MIPS relocations.
Now the linker always defines _gp symbol and uses hardcoded value for
its initialization. So offset between .got and _gp is 0x7ff0. The _gp_disp
and __gnu_local_gp defined if required and initialized by 0x7ff0.
In fact that is not correct because _gp symbol might be defined by a linker
script and holds arbitrary value. In that case we need to use this value
in relocation calculation and initialize _gp_disp and __gnu_local_gp
properly.
The patch fixes the problem and completes fixing the bug #30311.
https://llvm.org/bugs/show_bug.cgi?id=30311
Differential revision: https://reviews.llvm.org/D27036
llvm-svn: 287832
We have different functions to stringize objects to construct
error messages. For InputFile, we have getFilename, and for
InputSection, we have getName. You had to memorize them.
I think this is the case where the function overloading comes in handy.
This patch defines toString() functions that are overloaded for all these
types, so that you just call it in error().
Differential Revision: https://reviews.llvm.org/D27030
llvm-svn: 287787
Previously, we stored offsets in string tables to symbols, so
you needed to pass a string table to get a symbol name. This patch
stores const char pointers instead to eliminate the need to pass
a string table.
llvm-svn: 287737
If the linker script has SECTIONS, the address computation is now
always done in LinkerScript::assignAddresses, like for any other
section.
Before fixHeaders would do a tentative computation that
assignAddresses would sometimes override.
This patch also splits the cases where assignAddresses needs to add
the headers to the first PT_LOAD and the address computation. The net
effect is that we no longer create an empty page for no reason in the
included test case, which matches bfd behavior.
llvm-svn: 287565
MergeOutputSection class was a bit hard to use because it provdes
a series of finalize functions that have to be called in a right way
at a right time. It also intereacted with MergeInputSection, and the
logic was somewhat entangled between the two classes.
This patch simplifies it by providing only one finalize function.
Now, all you have to do is to call MergeOutputSection::finalize
when you have added all sections to the output section. Then, it
internally merges strings and initliazes StringPiece objects.
I think this is much easier to understand.
This patch also adds comments.
llvm-svn: 287314
I hit an internal linker script that was defining _DYNAMIC instead of
letting the linker do it. It turns out that both bfd and gold allow
that.
This is pretty easy to implement, just make the linker defined symbol
weak. This should have no impact in the case where there is no user
defined symbol: The visibility is hidden, which causes the output to
still be local.
llvm-svn: 287260
MIPS GOT handling is very different from other targets so it is better
to keep the code in the separatre section class MipsGotSection. This
patch introduces the new section and moves all MIPS specific code from
GotSection to the new class. I did not rename fields and methods in the
MipsGotSection class to reduce the diff and plan to do that by the
separate commit.
Differential revision: https://reviews.llvm.org/D26733
llvm-svn: 287150
This patch introduces the following changes:
- DynamicSection now inherits InputSection<ELFT> and was moved
to SyntheticSections.h/.cpp.
- Link and Entsize fields of DynamicSection are propagated to
its output section
- In<ELFT>::SyntheticSections was removed.
- Finalization of synthetic sections was removed from
OutputSection<ELFT>::finalize. Now finalizeSyntheticSections is
used instead.
Differential revision: https://reviews.llvm.org/D26603
llvm-svn: 286950
This patch stops creating symbols like __ehdr_start,
_end/_etext_edata,__tls_get_addr when using -r.
This fixes PR30984.
Differential revision: https://reviews.llvm.org/D26600
llvm-svn: 286941
Patch adds a filename to that error message.
I faced next error when debugged one of FreeBSD port:
error: relocation R_X86_64_PLT32 cannot refer to absolute symbol __tls_get_addr
error message was poor and this patch improves it to show the locations
of symbol declaration and using.
Differential revision: https://reviews.llvm.org/D26508
llvm-svn: 286940
Propagate program headers by walking the commands, not the
sections. This allows us to propagate program headers even from
sections that don't end up in the output.
Fixes pr30997.
llvm-svn: 286837
Unlike gold, bfd, gas or MC we were putting exidx sections first since
they are ro.
The spec doesn't explicitly say that they must come after, but it is
definitely more convenient for the consumer, matches other producers
and matches other areas in ELF (like SHT_GROUP) where sections are
ordered in a natural way.
llvm-svn: 286659
We would create a MergeInputSection for the synthetic .comment and
crash trying to add it to a regular output section.
With this we just don't add the synthetic section with -r. That is
consistent with gold that doesn't create .note.gnu.gold-version with
-r.
llvm-svn: 286635
Summary:
This patch adds a ".comment" section to an output. The comment
section contains the linker's version string. You can now
find out whether a binary is created by LLD or not using objdump
command like this.
$ objdump -s -j .comment foo
foo: file format elf64-x86-64
Contents of section .comment:
0000 00474343 3a202855 62756e74 7520342e .GCC: (Ubuntu 4.
0010 382e342d 32756275 6e747531 7e31342e 8.4-2ubuntu1~14.
...
00c0 766d2f74 72756e6b 20323835 38343629 vm/trunk 285846)
00d0 004c696e 6b65723a 204c4c44 20342e30 .Linker: LLD 4.0
00e0 2e302028 7472756e 6b203238 36343036 .0 (trunk 286406
00f0 2900 ).
Compilers emits .comment section as well, so the output contains
both compiler and linker information.
Alternative considered:
I first tried to add a SHT_NOTE section because GNU gold does that.
A NOTE section starts with a header which contains content type.
It turned out that ld.gold sets type NT_GNU_GOLD_VERSION to their
NOTE section. So the NOTE type is only for GNU gold (surprise!)
Next, I tried to create ".linker-version" section. However, it seems
that reusing the existing ".comment" section is better because 1)
other tools already know about .comment section and is able to strip
it and 2) the result contans not only linker info but also compiler
info.
Differential Revision: https://reviews.llvm.org/D26487
llvm-svn: 286496
Relocations are the last thing that we wore storing a raw section
pointer to and parsing on demand.
With this patch we parse it only once and store a pointer to the
actual data.
The patch also changes where we store it. It is now in
InputSectionBase. Not all sections have relocations, but most do and
this simplifies the logic. It also means that we now only support one
relocation section per section. Given that that constraint is
maintained even with -r with gold bfd and lld, I think it is OK.
llvm-svn: 286459
Patch allows to pass a symbols file to linker.
LLD will map symbols to sections and sort sections
in output according to symbol ordering file.
That can help to reduce the startup time and/or
amount of pagefaults during startup.
Also, interesting benchmark result was produced by Rafael Espíndola.
After applying the symbols file for clang he timed compiling
X86MCTargetDesc.ii to an object file.
The page faults went from just
56,988 to 56,946 since most faults are not in the binary.
Running time went from 4.403053515 to 4.178112244.
The speedup seems to be because of better cache
locality.
Differential revision: https://reviews.llvm.org/D26130
llvm-svn: 286440
The disadvantage is that we use uint64_t instad of uint32_t for some
value in 32 bit files. The advantage is a substantially simpler code,
faster builds and less code duplication.
llvm-svn: 286414
Previously, we have both input and output section for .MIPS.abiflags.
Now we have only one class for .MIPS.abiflags, which is MipsAbiFlagsSection.
This class is a synthetic input section.
.MIPS.abiflags sections are handled as regular sections until
the control reaches Writer. Writer then aggregates all sections
whose type is SHT_MIPS_ABIFLAGS to create a single synthesized
input section. The synthesized section is then processed normally
as if it came from an input file.
llvm-svn: 286398
Previously, we have both input and output sections for .reginfo and
.MIPS.options. Now for each such sections we have one synthetic input
sections: MipsReginfoSection and MipsOptionsSection respectively.
Both sections are handled as regular sections until the control reaches
Writer. Writer then aggregates all sections whose type is SHT_MIPS_REGINFO
or SHT_MIPS_OPTIONS to create a single synthesized input section. In that
moment Writer also save GP0 value to the MipsGp0 field of the corresponding
ObjectFile. This value required for R_MIPS_GPREL16 and R_MIPS_GPREL32
relocations calculation.
Differential revision: https://reviews.llvm.org/D26444
llvm-svn: 286397
This is similar to what was done for InputSection.
With this the various fields are stored in host order and only
converted to target order when writing.
llvm-svn: 286327
A CommonInputSection is a section containing all common symbols.
That was an input section but was abstracted in a different way
than the synthetic input sections because it was written before
the synthetic input section was invented.
This patch rewrites CommonInputSection as a synthetic input section
so that it behaves better with other sections.
llvm-svn: 286053
Previously, we do this piece of code to iterate over all input sections.
for (elf::ObjectFile<ELFT> *F : Symtab.getObjectFiles())
for (InputSectionBase<ELFT> *S : F->getSections())
It turned out that this mechanisms doesn't work well with synthetic
input sections because synthetic input sections don't belong to any
input file.
This patch defines a vector that contains all input sections including
synthetic ones.
llvm-svn: 286051
Previously, we added strings from DynamicSection::finalize().
It was a bit tricky because finalize() is supposed to fix the final
size of the section, but adding new strings would change the size of
.dynstr section. So there was a dependency between finalize functions
of .dynamic and .dynstr.
However, I noticed that we can elimiante the dependency by simply
add strings early; we don't have to do that in finalize() but can do
from DynamicSection's ctor.
This patch defines a new function, DynamicSection::addEntries, to
add .dynamic entries that doesn't depend on other sections.
llvm-svn: 285784
We are going to have many more classes for linker-synthesized
input sections, so it's worth to be added to a separate file
than to the file for regular input sections.
llvm-svn: 285740
Previously, we have a lot of BumpPtrAllocators, but all these
allocators virtually have the same lifetime because they are
not freed until the linker finishes its job. This patch aggregates
them into a single allocator.
Differential revision: https://reviews.llvm.org/D26042
llvm-svn: 285452
Instead of having 3 section allocators per file, have 3 for all files.
This is a substantial performance improvement for some cases. Linking
chromium without gc speeds up by 1.065x.
This requires using _exit in fatal since we have to avoid destructing
an InputSection if fatal is called from the constructor.
Thanks to Rui for the suggestion.
llvm-svn: 285290
When static linking in ARM (like Mips) __tls_get_addr is defined by
the library so we should not define it as a synthetic.
We also need to add __exidx_start and __exidx_end for the .ARM.exidx
section as the static libc library startup code is expecting them to
be defined by the default linker script for static linking on ARM.
Differential revision: https://reviews.llvm.org/D25978
llvm-svn: 285279
As the state of lld gets more complicated, shutting down gets more
expensive.
In a normal lld run we can just call _exit immediately after renaming
the temporary output file. We still want the ability to run a full
shutdown since that is useful for detecting memory leaks.
This patch adds a --full-shutdown flag and changes lit to use it.
llvm-svn: 285224
Instead of storing a pointer, store the members we need.
The reason for doing this is that it makes it far easier to create
synthetic sections. It also avoids reading data from files multiple
times., which might help with cross endian linking and host
architectures with slow unaligned access.
There are obvious compacting opportunities, but this already has mixed
results even on native x86_64 linking.
There is also the possibility of better refactoring the code for
handling common symbols, but this already shows that a custom class is
not necessary.
llvm-svn: 285148
We were fairly inconsistent as to what information should be accessed
with getSectionHdr and what information (like alignment) was stored
elsewhere.
Now all section info has a dedicated getter. The code is also a bit
more compact.
llvm-svn: 285079
We were previously using the (static) addSynthetic function to create
*_start/*_end symbols. This function was doing almost the same thing as
addOptionalSynthetic, except that it would also create the symbol in the
case where it is unreferenced. Because the symbol has hidden visibility,
creating it in that case would have no effect other than adding another
entry to the static symbol table. Remove addSynthetic and change callers to
use addOptionalSynthetic instead.
Differential Revision: https://reviews.llvm.org/D25545
llvm-svn: 285021
In this patch partial gdb_index section is created.
For costructing the .gdb_index section 6 steps should be performed (details are in
SplitDebugInfo.cpp file header), this patch do first 3:
Creates proper section header.
Fills list of compilation units.
Types CU list area is not supposed to be supported, so it is ignored and therefore
can be treated as implemented either.
Differential revision: https://reviews.llvm.org/D24706
llvm-svn: 284708
Previously, we were checking the existence of an entry symbol
too early. It was done before the linker script processor creates
symbols defined in scripts. Fixes bug 30743.
llvm-svn: 284676
This is 30646.
PT_OPENBSD_RANDOMIZE
The array element specifies the location and size of a part of the memory image of the program that must be filled with random data before any code in the object is executed. The memory region specified by a segment of this type may overlap the region specified by a PT_GNU_RELRO segment, in which case the intersection will be filled with random data before being marked read-only.
Reference links:
http://man.openbsd.org/OpenBSD-current/man5/elf.5c494713c45
Differential revision: https://reviews.llvm.org/D25469
llvm-svn: 284234
-z wxneeded creates a PHDR PT_OPENBSD_WXNEEDED.
PT_OPENBSD_WXNEEDED
The array element specifies that a process executing this file may need to be able to map or protect memory regions as simultaneously executable and writable. If the system is unable or unwilling to permit that for this executable then it may fail immediately. This segment type is meaningful only for executable files and is ignored in other objects.
http://man.openbsd.org/OpenBSD-current/man5/elf.5
Differential revision: https://reviews.llvm.org/D25472
llvm-svn: 284226
Previously we would fail to synthesise a __start_ or __stop_ symbol if
there existed a definition in a DSO. Instead, we would try to link against
the DSO definition. This became possible after D23552 when linking against
lld-produced DSOs but could in principle also occur when linking against
DSOs produced by other linkers.
Not only does it seem more likely that a user would expect the resolved
definition to be local to the executable, but if a __start_ or __stop_
symbol was synthesised by the linker, it is effectively impossible to link
against correctly from a non-PIC executable in a read-only section. Neither
a PLT nor a copy relocation would give us the right semantics here. The only
way the link could succeed is if the executable provided its own synthetic
definition of the symbol.
The fix is to also synthesise the definition if the only definition comes
from a DSO. Since this is what the addOptionalSynthetic function does,
switch to using that function.
Fixes PR30680.
Differential Revision: https://reviews.llvm.org/D25544
llvm-svn: 284168
Previously, we supported only SHF_COMPRESSED sections because it's
new and it's the ELF standard. But there are object files compressed
in the GNU style out there, so we had to support it.
Sections compressed in the GNU style start with ".zdebug_" and
contain different headers than the ELF standard's one. In this
patch, getRawCompressedData is responsible to handle it.
A tricky thing about GNU-style compressed sections is that we have
to rename them when creating output sections. ".zdebug_" prefix
implies the section is compressed. We need to rename ".zdebug_"
".debug" because our output sections are not compressed.
We do that in this patch.
llvm-svn: 284068
This part was splitted from D25016.
When sh_info value was set in the way that non-local symbol was treated as local, lld
was asserting, patch fixes that.
Differential revision: https://reviews.llvm.org/D25371
llvm-svn: 283859
Absolute local symbols with name staring from ".L" were reason of crash.
The same could happen when using some broken inputs found by AFL.
Patch fixes that.
Differential revision: https://reviews.llvm.org/D25365
llvm-svn: 283731
The .ARM.exidx sections contain a table. Each entry has two fields:
- PREL31 offset to the function the table entry describes
- Action to take, either cantunwind, inline unwind, or PREL31 offset to
.ARM.extab section
The table entries must be sorted in order of the virtual addresses the
first entry of the table describes. Traditionally this is implemented by
the SHF_LINK_ORDER dependency. Instead of implementing this directly we
sort the table entries post relocation.
The .ARM.exidx OutputSection is described by the PT_ARM_EXIDX program
header
Differential revision: https://reviews.llvm.org/D25127
llvm-svn: 283730
Since they end up going on the same PT_LOAD, there is no reason to
sort them. This matches bfd's behaviour and is user visible in the
placement of orphan sections.
llvm-svn: 282799
If there is not sufficient address space, just give up and don't put
the header in the PT_LOAD.
This matches bfd behaviour and I found at least one script that
depends on having a section at address 0.
llvm-svn: 282750
If we two sections reside in the same PT_LOAD segment,
we compute second section using the following formula:
Off2 = Off1 + VA2 - VA1. This allows OS kernel allocating
sections correctly when loading an image.
Differential revision: https://reviews.llvm.org/D25014
llvm-svn: 282705
This matches the behavior of Binutils linkers. We also change the
default MaxPageSize on x86-64 to 0x1000 to preserver the current
behavior, which is the same as the behavior implemented by gold.
https://llvm.org/bugs/show_bug.cgi?id=30541
Differential Revision: https://reviews.llvm.org/D24987
llvm-svn: 282560