This change reverts:
r293061: "[InstCombine] Canonicalize guards for NOT OR condition"
r293058: "[InstCombine] Canonicalize guards for AND condition"
They miscompile cases like:
```
declare void @llvm.experimental.guard(i1, ...)
define void @test_guard_not_or(i1 %A, i1 %B) {
%C = or i1 %A, %B
%D = xor i1 %C, true
call void(i1, ...) @llvm.experimental.guard(i1 %D, i32 20, i32 30)[ "deopt"() ]
ret void
}
```
because they do transfer the `i32 20, i32 30` parameters to newly
created guard instructions.
llvm-svn: 293227
Summary:
This does not actually fix the testcase in PR31761 (discussion is
ongoing on the testcase), but does fix a bug it exposes, where stores
were not properly clobbering loads.
We accomplish this by unifying the memory equivalence infratructure
back into the normal congruence infrastructure, and then properly
destroying congruence classes when memory state leaders disappear.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29195
llvm-svn: 293216
We already have this fold when the lshr has one use, but it doesn't need that
restriction. We may be able to remove some code from foldShiftedShift().
Also, move the similar:
(X << C) >>u C --> X & (-1 >>u C)
...directly into visitLShr to help clean up foldShiftByConstOfShiftByConst().
That whole function seems questionable since it is called by commonShiftTransforms(),
but there's really not much in common if we're checking the shift opcodes for every
fold.
llvm-svn: 293215
change the set of uniform instructions in the loop causing an assert
failure.
The problem is that the legalization checking also builds data
structures mapping various facts about the loop body. The immediate
cause was the set of uniform instructions. If these then change when
LCSSA is formed, the data structures would already have been built and
become stale. The included test case triggered an assert in loop
vectorize that was reduced out of the new PM's pipeline.
The solution is to form LCSSA early enough that no information is cached
across the changes made. The only really obvious position is outside of
the main logic to vectorize the loop. This also has the advantage of
removing one case where forming LCSSA could mutate the loop but we
wouldn't track that as a "Changed" state.
If it is significantly advantageous to do some legalization checking
prior to this, we can do a more careful positioning but it seemed best
to just back off to a safe position first.
llvm-svn: 293168
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.
I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.
Differential Revision: https://reviews.llvm.org/D28897
llvm-svn: 293136
Even when we don't create a remainder loop (that is, when we unroll by 2), we
may duplicate nested loops into the remainder. This is complicated by the fact
the remainder may itself be either inserted into an outer loop, or at the top
level. In the latter case, we may need to create new top-level loops.
Differential Revision: https://reviews.llvm.org/D29156
llvm-svn: 293124
Summary:
Previously we assumed that the result of sqrt(x) always had 0 as its
sign bit. But sqrt(-0) == -0.
Reviewers: hfinkel, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28928
llvm-svn: 293115
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert
for (i = 0; i < n; i++) {
guard(i < len);
...
}
to
for (i = 0; i < n; i++) {
guard(n - 1 < len);
...
}
After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:
if (n - 1 < len)
for (i = 0; i < n; i++) {
...
}
else
deoptimize
This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D29034
llvm-svn: 293064
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29075
Patch by Maxim Kazantsev.
llvm-svn: 293061
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29074
Patch by Maxim Kazantsev.
llvm-svn: 293058
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: majnemer, apilipenko
Differential Revision: https://reviews.llvm.org/D29071
Patch by Maxim Kazantsev.
llvm-svn: 293056
instructions.
If number of instructions in horizontal reduction list is not power of 2
then only PowerOf2Floor(NumberOfInstructions) last elements are actually
vectorized, other instructions remain scalar. Patch tries to vectorize
the remaining elements either.
Differential Revision: https://reviews.llvm.org/D28959
llvm-svn: 293042
Floating point intrinsics in LLVM are generally not speculatively
executed, since most of them are defined to behave the same as libm
functions, which set errno.
However, the @llvm.powi.* intrinsics do not correspond to any libm
function, and lacks any defined error handling semantics in LangRef.
It most certainly does not alter errno.
llvm-svn: 293041
Conservatively disable sinking and merging inline-asm instructions as doing so
can potentially create arguments that cannot satisfy the inline-asm constraints.
For example, SimplifyCFG used to do the following transformation:
(before)
if.then:
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 8)
br label %if.end
if.else:
%1 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 6)
br label %if.end
(after)
%.sink = select i1 %tobool, i32 6, i32 8
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 %.sink)
This would result in a crash in the backend since only immediate integer operands
are permitted for constraint "n".
rdar://problem/30110806
Differential Revision: https://reviews.llvm.org/D29111
llvm-svn: 293025
loops.
We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.
I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.
Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.
Differential Revision: https://reviews.llvm.org/D28848
llvm-svn: 293011
Summary:
When we decide that the result of the invoke instruction need to be spilled, we need to insert the spill into a block that is on the normal edge coming out of the invoke instruction. (Prior to this change the code would insert the spill immediately after the invoke instruction, which breaks the IR, since invoke is a terminator instruction).
In the following example, we will split the edge going into %cont and insert the spill there.
```
%r = invoke double @print(double 0.0) to label %cont unwind label %pad
cont:
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %0, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
call double @print(double %r)
```
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: mehdi_amini, llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D29102
llvm-svn: 293006
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 292979
Summary:
GVNHoist performs all the optimizations that MLSM does to loads, in a
more general way, and in a faster time bound (MLSM is N^3 in most
cases, N^4 in a few edge cases).
This disables the load portion.
Note that the way ld_hoist_st_sink.ll is written makes one think that
the loads should be moved to the while.preheader block, but
1. Neither MLSM nor GVNHoist do it (they both move them to identical places).
2. MLSM couldn't possibly do it anyway, as the while.preheader block
is not the head of the diamond, while.body is. (GVNHoist could do it
if it was legal).
3. At a glance, it's not legal anyway because the in-loop load
conflict with the in-loop store, so the loads must stay in-loop.
I am happy to update the test to use update_test_checks so that
checking is tighter, just was going to do it as a followup.
Note that i can find no particular benefit to the store portion on any
real testcase/benchmark i have (even size-wise). If we really still
want it, i am happy to commit to writing a targeted store sinker, just
taking the code from the MemorySSA port of MergedLoadStoreMotion
(which is N^2 worst case, and N most of the time).
We can do what it does in a much better time bound.
We also should be both hoisting and sinking stores, not just sinking
them, anyway, since whether we should hoist or sink to merge depends
basically on luck of the draw of where the blockers are placed.
Nonetheless, i have left it alone for now.
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29079
llvm-svn: 292971
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary:
Next round of extra tests for MSSA.
I have a prototype invariant.group handling implementation
that fixes all the FIXMEs, and I think it will be
easier to see what is the difference if I firstly
post this, and then only fix fixits.
Reviewers: george.burgess.iv, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29022
llvm-svn: 292797
bots ever since d0k fixed the CHECK lines so that it did something at
all.
It isn't actually testing SCEV directly but LSR, so move it into LSR and
the x86-specific tree of tests that already exists there. Target
dependence is common and unavoidable with the current design of LSR.
llvm-svn: 292774
invalidation of deleted functions in GlobalDCE.
This was always testing a bug really triggered in GlobalDCE. Right now
we have analyses with asserting value handles into IR. As long as those
remain, when *deleting* an IR unit, we cannot wait for the normal
invalidation scheme to kick in even though it was designed to work
correctly in the face of these kinds of deletions. Instead, the pass
needs to directly handle invalidating the analysis results pointing at
that IR unit.
I've tought the Inliner about this and this patch teaches GlobalDCE.
This will handle the asserting VH case in the existing test as well as
other issues of the same fundamental variety. I've moved the test into
the GlobalDCE directory and added a comment explaining what is going on.
Note that we cannot simply require LVI here because LVI is too lazy.
llvm-svn: 292773
While this is covered by a clang test case, we should have something
locally to LLVM that immediately checks the inliner doesn't leave
analyses to dangling IR bodies.
llvm-svn: 292772
new PM's inliner.
The bug happens when we refine an SCC after having computed a proxy for
the FunctionAnalysisManager, and then proceed to compute fresh analyses
for functions in the *new* SCC using the manager provided by the old
SCC's proxy. *And* when we manage to mutate a function in this new SCC
in a way that invalidates those analyses. This can be... challenging to
reproduce.
I've managed to contrive a set of functions that trigger this and added
a test case, but it is a bit brittle. I've directly checked that the
passes run in the expected ways to help avoid the test just becoming
silently irrelevant.
This gets the new PM back to passing the LLVM test suite after the PGO
improvements landed.
llvm-svn: 292757
Summary:
This test had a bug: !llvm.invariant.group instead
of !invariant.group.
Also add some new test for future development.
All tests passes, when MSSA will support invariant.group
only the lines with FIXIT should be changed.
Reviewers: dberlin, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28969
llvm-svn: 292730