This adds the following combines:
```
x = ... 0 or 1
c = icmp eq x, 1
->
c = x
```
and
```
x = ... 0 or 1
c = icmp ne x, 0
->
c = x
```
When the target's true value for the relevant types is 1.
This showed up in the following situation:
https://godbolt.org/z/M5jKexWTW
SDAG currently supports the `ne` case, but not the `eq` case. This can probably
be further generalized, but I don't feel like thinking that hard right now.
This gives some minor code size improvements across the board on CTMark at
-Os for AArch64. (0.1% for 7zip and pairlocalalign in particular.)
Differential Revision: https://reviews.llvm.org/D109130
The sext_inreg_of_load combine did not have the isLegalOrBeforeLegalizer check,
leading to the generation of potentially illegal G_SEXTLOADs when run after legalization.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D108626
Combine two G_PTR_ADDs, but keep the register bank of the constant.
That way, the combine can be used in post-regbank-select combines.
Introduce two helper methods in CombinerHelper, getRegBank and
setRegBank that get and set an optional register bank to a register.
That way, they can be used before and after register bank selection.
Differential Revision: https://reviews.llvm.org/D103326
This is a fairly common pattern:
```
%mask = G_CONSTANT iN <mask val>
%add = G_ADD %lhs, %rhs
%and = G_AND %add, %mask
```
We have combines to eliminate G_AND with a mask that does nothing.
If we combined the above to this:
```
%mask = G_CONSTANT iN <mask val>
%narrow_lhs = G_TRUNC %lhs
%narrow_rhs = G_TRUNC %rhs
%narrow_add = G_ADD %narrow_lhs, %narrow_rhs
%ext = G_ZEXT %narrow_add
%and = G_AND %ext, %mask
```
We'd be able to take advantage of those combines using the trunc + zext.
For this to work (or be beneficial in the best case)
- The operation we want to narrow then widen must only be used by the G_AND
- The G_TRUNC + G_ZEXT must be free
- Performing the operation at a narrower width must not produce a different
value than performing it at the original width *after masking.*
Example comparison between SDAG + GISel: https://godbolt.org/z/63jzb1Yvj
At -Os for AArch64, this is a 0.2% code size improvement on CTMark/pairlocalign.
Differential Revision: https://reviews.llvm.org/D107929
We should use MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval()
instead of eraseFromParent().
We should probably use that in other places too but fix this issue which
affects clang bootstrap builds for now.
Instructions that produceSameValue produce same values for operands with
same index. matchEqualDefs used to return true for any two values from
different instructions that produce same values. Fix this by checking if
values are defined by operands with the same index.
Differential Revision: https://reviews.llvm.org/D107362
Use it AArch64 post-legal combiner. These don't always get folded because when
the instructions are created the constants are obscured by artifacts.
Differential Revision: https://reviews.llvm.org/D106776
Although this combine checks that there's no load folding barriers between
the loads that it's trying to merge, it was inserting the load at the
MIRBuilder's default insertion point, which is the G_OR use inst.
This was causing a miscompile in the test suite's
SingleSource/Regression/C/gcc-c-torture/execute/GCC-C-execute-bswap-2
Differential Revision: https://reviews.llvm.org/D106251
This adds some level of type safety, allows helper functions to be added for
specific opcodes for free, and also allows us to succinctly check for class
membership with the usual dyn_cast/isa/cast functions.
To start off with, add variants for the different load/store operations with some
places using it.
Differential Revision: https://reviews.llvm.org/D105751
We're trying to match a few pointer computation patterns here for
re-association opportunities.
1) Isolating a constant operand to be on the RHS, e.g.:
G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
2) Folding two constants in each sub-tree as long as such folding
doesn't break a legal addressing mode.
G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
AArch64 code size improvements on CTMark with -Os:
Program before after diff
pairlocalalign 251048 251044 -0.0%
consumer-typeset 421820 421812 -0.0%
kc 431348 431320 -0.0%
SPASS 413404 413300 -0.0%
clamscan 384396 384220 -0.0%
tramp3d-v4 370640 370412 -0.1%
lencod 432096 431772 -0.1%
bullet 479400 478796 -0.1%
sqlite3 288504 288072 -0.1%
7zip-benchmark 573796 570768 -0.5%
Geomean difference -0.1%
Differential Revision: https://reviews.llvm.org/D105069
This enables proper lowering of non-byte sized loads. We still aren't
faithfully preserving memory types everywhere, so the legality checks
still only consider the size.
Adds legalizer, register bank select, and instruction
select support for G_SBFX and G_UBFX. These opcodes generate
scalar or vector ALU bitfield extract instructions for
AMDGPU. The instructions allow both constant or register
values for the offset and width operands.
The 32-bit scalar version is expanded to a sequence that
combines the offset and width into a single register.
There are no 64-bit vgpr bitfield extract instructions, so the
operations are expanded to a sequence of instructions that
implement the operation. If the width is a constant,
then the 32-bit bitfield extract instructions are used.
Moved the AArch64 specific code for creating G_SBFX to
CombinerHelper.cpp so that it can be used by other targets.
Only bitfield extracts with constant offset and width values
are handled currently.
Differential Revision: https://reviews.llvm.org/D100149
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
Use existing KnownBits helpers from KnownBits.h to simplify G_ICMPs.
E.g.
x == x -> true
x != x -> false
load(x) > 1 -> true (when the load is known to be greater than 1)
And so on.
Differential Revision: https://reviews.llvm.org/D102542
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp: In member function ‘bool llvm::CombinerHelper::matchFunnelShiftToRotate(llvm::MachineInstr&)’:
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp:3882:35: warning: ?: using integer constants in boolean context, the expression will always evaluate to ‘true’ [-Wint-in-bool-context]
3882 | Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
Basically a port of isBitfieldExtractOpFromSExtInReg in AArch64ISelDAGToDAG.
This is only done post-legalization for now. Once the legalizer knows how to
decompose these back into shifts, this requirement can probably be removed.
Differential Revision: https://reviews.llvm.org/D99230
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
If every element is extracted from a G_BUILD_VECTOR, pass through the source
registers. This is different to the extract(build_vector) combine because this
one tolerates multiple users as long as they're exhaustive.
Differential Revision: https://reviews.llvm.org/D97890
This combine tries to do inter-block hoisting of extends of G_PHIs, into the
originating blocks of the phi's incoming value. The idea is to expose further
optimization opportunities that are normally obscured by the PHI.
Some basic heuristics, and a target hook for AArch64 is added, to allow tuning.
E.g. if the extend is used by a G_PTR_ADD, it doesn't perform this combine
since it may be folded into the addressing mode during selection.
There are very minor code size improvements on AArch64 -Os, but the real benefit
is that it unlocks optimizations like AArch64 conditional compares on some
benchmarks.
Differential Revision: https://reviews.llvm.org/D95703
The builder was using the extend user as the insertion point, which meant that
we were incorrectly "moving" the load from its original position, and therefore
could violate memory operation ordering.
If the G_BR + G_BRCOND in this combine use the same MBB, then it will infinite
loop. Don't allow that to happen.
Differential Revision: https://reviews.llvm.org/D95895
This is a restricted version of the combine in `DAGCombiner::MatchLoadCombine`.
(See D27861)
This tries to recognize patterns like below (assuming a little-endian target):
```
s8* x = ...
s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
->
s32 val = *((i32)a)
s8* x = ...
s32 val = a[3] | (a[2] << 8) | (a[1] << 16) | (a[0] << 24)
->
s32 val = BSWAP(*((s32)a))
```
(This patch also handles the big-endian target case as well, in which the first
example above has a BSWAP, and the second example above does not.)
To recognize the pattern, this searches from the last G_OR in the expression
tree.
E.g.
```
Reg Reg
\ /
OR_1 Reg
\ /
OR_2
\ Reg
.. /
Root
```
Each non-OR register in the tree is put in a list. Each register in the list is
then checked to see if it's an appropriate load + shift logic.
If every register is a load + potentially a shift, the combine checks if those
loads + shifts, when OR'd together, are equivalent to a wide load (possibly with
a BSWAP.)
To simplify things, this patch
(1) Only handles G_ZEXTLOADs (which appear to be the common case)
(2) Only works in a single MachineBasicBlock
(3) Only handles G_SHL as the bit twiddling to stick the small load into a
specific location
An IR example of this is here: https://godbolt.org/z/4sP9Pj (lifted from
test/CodeGen/AArch64/load-combine.ll)
At -Os on AArch64, this is a 0.5% code size improvement for CTMark/sqlite3,
and a 0.4% improvement for CTMark/7zip-benchmark.
Also fix a bug in `isPredecessor` which caused it to fail whenever `DefMI` was
the first instruction in the block.
Differential Revision: https://reviews.llvm.org/D94350
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
We can use KnownBitsAnalysis to cover cases when mask is not trivial. It can
also help with cases when mask is not constant but can still be folded into
one. Since 'and' is comutative we should treat both operands as possible
replacements.
Differential Revision: https://reviews.llvm.org/D90674
This sequence of instructions can be simplified if they are single use and
some operands are constants. Additional combines may be applied afterwards.
Differential Revision: https://reviews.llvm.org/D90223
Sequence of same shift instructions with constant operands can be combined into
a single shift instruction.
Differential Revision: https://reviews.llvm.org/D90217
https://reviews.llvm.org/D88060
This adds the following combines
1) build_vector formation from insert_vec_elts
2) insert_vec_elts (build_vector) -> build_vector
https://reviews.llvm.org/D88865
This adds a single combine for GlobalISel to fold:
ptradd (inttoptr C1) C2
Into:
C1 + C2
Additionally, a small test for AArch64 is added.
Patch by pnappa.
When the first operand is a null pointer we can avoid making a G_PTR_ADD and
make a G_INTTOPTR with the offset operand.
This helps us avoid making add with 0 later on for targets such as AMDGPU.
Differential Revision: https://reviews.llvm.org/D87140
When we see this:
```
%and = G_AND %x, %y
%xor = G_XOR %and, %y
```
Produce this:
```
%not = G_XOR %x, -1
%new_and = G_AND %not, %y
```
as long as we are guaranteed to eliminate the original G_AND.
Also matches all commuted forms. E.g.
```
%and = G_AND %y, %x
%xor = G_XOR %y, %and
```
will be matched as well.
Differential Revision: https://reviews.llvm.org/D88104
The shift amount type does not necessarily match the result type. This
was inserting a trunc from s32 to s32, which asserted. Just preserve
the original shift amount type which can be legalized later.
https://reviews.llvm.org/D86393
Patch adds five new `GICombinerRules`, one for each of the following unary
FP instrs: `G_FNEG`, `G_FABS`, `G_FPTRUNC`, `G_FSQRT`, and `G_FLOG2`. The
combine rules perform the FP operation on the constant operand and replace
the original instr with the result. Patch additionally adds new combiner
tests for the AArch64 target to test these new combiner rules.
test/CodeGen/AArch64/GlobalISel/combine-trunc.mir was failing
due to the different order for evaluating function arguments.
This patch updates the related code to fix the issue.
https://reviews.llvm.org/D87668
Patch adds two new GICombinerRules, one for G_MUL(X, 1) and another for G_MUL(X, -1).
G_MUL(X, 1) is an identity combine, and G_MUL(X, -1) gets replaced with G_SUB(0, X).
Patch additionally adds new combiner tests for the AArch64 target to test these
new combiner rules, as well as updates AMDGPU GISel tests.
Patch by mkitzan
Add a combiner helper that replaces G_UNMERGE where all the destination lanes
are dead except the first one with a G_TRUNC.
Differential Revision: https://reviews.llvm.org/D87174
Add a combiner helper that replaces G_UNMERGE of big constants into direct
use of smaller constants.
Differential Revision: https://reviews.llvm.org/D87166
https://reviews.llvm.org/D87554
Patch adds one new GICombinerRule for G_FABS. The combine rule folds G_FABS(G_FABS(X)) to G_FABS(X).
Patch additionally adds new combiner tests for the AArch64 target to test this new combiner rule.
Patch by mkitzan.
Add the matching and applying function to the combiner helper for
G_UNMERGE_VALUES(G_MERGE_VALUES).
This combine also supports any merge-like input nodes, like G_BUILD_VECTORS
and is robust against bitcasts in between int unmerge and merge nodes.
When the input type of the merge node and the output type of the unmerge
node are not the same, but the sizes are, the combine still applies but
creates bitcasts between the sources and the destinations instead of
reusing the destinations directly.
Long term, the artifact combiner should probably reuse that helper, but
as of today, it doesn't use any outside helper, so I kept it this way.
Differential Revision: https://reviews.llvm.org/D87117
This combine previously tried to take sequences like:
%cond = G_ICMP pred, a, b
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and by inverting the compare predicate and swapping branch targets, delete the
G_BR and instead have a single conditional branch to the falsebb. Since in an
earlier patch we have a combine to fold not(icmp) into just an inverted icmp,
we don't need this combine to do as much. This patch instead generalizes the
combine by just looking for:
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and then inverting the condition using a not (xor). The xor can be folded away
in a separate combine. This change also lets us avoid some optimization code
in the IRTranslator.
I also think that deleting G_BRs in the combiner is unnecessary. That's
something that targets can decide to do at selection time and could simplify
generic code in future.
Differential Revision: https://reviews.llvm.org/D86664
The post-index matcher, before it queries the target legality, walks uses
of some instructions which in pathological cases can be massive. Since
no targets actually support indexed loads yet, disable this to stop wasting
compile time on something which is going to fail anyway.
This is needed for an upcoming change to how we translate conditional branches
which might generate these.
Differential Revision: https://reviews.llvm.org/D86383
https://reviews.llvm.org/D83833
Patch adds two new GICombinerRules for G_SELECT. The rules include:
combining selects with undef comparisons into their first selectee value,
and to combine away selects with constant comparisons. Patch additionally
adds a new combiner test for the AArch64 target to test these new G_SELECT
combiner rules and the existing select_same_val combiner rule.
Patch by mkitzan
AArch64, X86 and Mips currently directly consumes these and custom
lowering to produce a libcall, but really these should follow the
normal legalization process through the libcall/lower action.
This produces less work for addressing mode matching. I think this is
safe since I don't think machine IR is supposed to give the same
aliasing properties as getelementptr in the IR.
shl ([sza]ext x, y) => zext (shl x, y).
Turns expensive 64 bit shifts into 32 bit if it does not overflow the
source type:
This is a port of an AMDGPU DAG combine added in
5fa289f0d8. InstCombine does this
already, but we need to do it again here to apply it to shifts
introduced for lowered getelementptrs. This will help matching
addressing modes that use 32-bit offsets in a future patch.
TableGen annoyingly assumes only a single match data operand, so
introduce a reusable struct. However, this still requires defining a
separate GIMatchData for every combine which is still annoying.
Adds a morally equivalent function to the existing
getShiftAmountTy. Without this, we would have to do try to repeatedly
query the legalizer info and guess at what type to use for the shift.
If we have a mask, and a value x, where (x & mask) == x, we can drop the AND
and just use x.
This is about a 0.4% geomean code size improvement on CTMark at -O3 for AArch64.
In AArch64, this is most useful post-legalization. Patterns like this often
show up when legalizing s1s, which must be extended to larger types.
e.g.
```
%cmp:_(s32) = G_ICMP ...
%and:_(s32) = G_AND %cmp, 1
```
Since G_ICMP only produces a single bit, there's no reason to mask it with the
G_AND.
Differential Revision: https://reviews.llvm.org/D85463
This is restricted to single use loads, which if we fold to sextloads we can
find more optimal addressing modes on AArch64.
This also fixes an overload the MachineFunction::getMachineMemOperand() method
which was incorrectly using the MF alignment instead of the MMO alignment.
Differential Revision: https://reviews.llvm.org/D85966
By detecting this sign extend pattern early, we can uncover opportunities for
more optimizations.
Differential Revision: https://reviews.llvm.org/D85965
This implements
```
(logic_op (op x...), (op y...)) -> (op (logic_op x, y))
```
when `op` is an extend, a shift, or an and.
This is similar to `DAGCombiner::hoistLogicOpWithSameOpcodeHands`
(with a bunch of missing cases, e.g. G_TRUNC, G_BITCAST, etc.)
This is implemented so it works both pre and post-legalization.
This also adds a general way to add a series of instructions in a combine.
(`applyBuildInstructionSteps`).
Differential Revision: https://reviews.llvm.org/D85050
https://reviews.llvm.org/D84909
Patch adds two new GICombinerRules, one for G_INTTOPTR and one for
G_PTRTOINT. The G_INTTOPTR elides ptr2int(int2ptr(x)) to a copy of x, if
the cast is within the same address space. The G_PTRTOINT elides
int2ptr(ptr2int(x)) to a copy of x. Patch additionally adds new combiner
tests for the AArch64 target to test these new combiner rules.
Patch by mkitzan
It's possible to end up with a zext or something in the way of a G_CONSTANT,
even pre-legalization. This can happen with memsets.
e.g.
https://godbolt.org/z/Bjc8cw
To make sure we can catch these cases, use `getConstantVRegValWithLookThrough`
instead of `mi_match`.
Differential Revision: https://reviews.llvm.org/D81875
This implements the following combines:
((0-A) + B) -> B-A
(A + (0-B)) -> A-B
Porting over the basic algebraic combines from the DAGCombiner. There are
several combines which fold adds away into subtracts. This is just the simplest
one.
I noticed that add combines are some of the most commonly hit across CTMark,
(via print statements when they fire), so I'm porting over some of the obvious
ones.
This gives some minor code size improvements on CTMark at -O3 on AArch64.
Differential Revision: https://reviews.llvm.org/D77453
Summary:
Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::allowsMisalignedMemoryAccesses` without marking it override.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81374