As it was discovered in post-commit feedback
for 0aa0458f14,
we handle thunks incorrectly, and end up annotating
their this/return with attributes that are valid
for their callees, not for thunks themselves.
While it would be good to fix this properly,
and keep annotating them on thunks,
i've tried doing that in https://reviews.llvm.org/D100388
with little success, and the patch is stuck for a month now.
So for now, as a stopgap measure, subj.
This adds the long overdue implementations of these functions
that have been part of the ABI document and are now part of
the "Power Vector Intrinsic Programming Reference" (PVIPR).
The approach is to add new builtins and to emit code with
the fast flag regardless of whether fastmath was specified
on the command line.
Differential revision: https://reviews.llvm.org/D101209
The Neon vadd intrinsics were added to the ARMSIMD intrinsic map,
however due to being defined under an AArch64 guard in arm_neon.td,
were not previously useable on ARM. This change rectifies that.
It is important to note that poly128 is not valid on ARM, thus it was
extracted out of the original arm_neon.td definition and separated
for the sake of AArch64.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D100772
Adds new intrinsics for instructions that are in the final SIMD spec but did not
previously have intrinsics. Also updates the names of existing intrinsics to
reflect the final names of the underlying instructions in the spec. Keeps the
old names as deprecated functions to ease the transition to the new names.
Differential Revision: https://reviews.llvm.org/D101112
Use the target-independent @llvm.fptosi and @llvm.fptoui intrinsics instead.
This includes removing the instrinsics for i32x4.trunc_sat_zero_f64x2_{s,u},
which are now represented in IR as a saturating truncation to a v2i32 followed by
a concatenation with a zero vector.
Differential Revision: https://reviews.llvm.org/D100596
Removes the builtins and intrinsics used to opt in to using these instructions
and replaces them with normal ISel patterns now that they are no longer
prototypes.
Differential Revision: https://reviews.llvm.org/D100402
Add a custom DAG combine and ISD opcode for detecting patterns like
(uint_to_fp (extract_subvector ...))
before the extract_subvector is expanded to ensure that they will ultimately
lower to f64x2.convert_low_i32x4_{s,u} instructions. Since these instructions
are no longer prototypes and can now be produced via standard IR, this commit
also removes the target intrinsics and builtins that had been used to prototype
the instructions.
Differential Revision: https://reviews.llvm.org/D100425
Now that these instructions are no longer prototypes, we do not need to be
careful about keeping them opt-in and can use the standard LLVM infrastructure
for them. This commit removes the bespoke intrinsics we were using to represent
these operations in favor of the corresponding target-independent intrinsics.
The clang builtins are preserved because there is no standard way to easily
represent these operations in C/C++.
For consistency with the scalar codegen in the Wasm backend, the intrinsic used
to represent {f32x4,f64x2}.nearest is @llvm.nearbyint even though
@llvm.roundeven better captures the semantics of the underlying Wasm
instruction. Replacing our use of @llvm.nearbyint with use of @llvm.roundeven is
left to a potential future patch.
Differential Revision: https://reviews.llvm.org/D100411
These all pass 1 type to getIntrinsic. So rather than assigning
IntrinsicTypes for each builtin which invokes the SmallVector
constructor, just select the intrinsic ID with a switch and
share a single assignment of IntrinsicTypes.
Head files are included in a separate patch in case the name needs to be changed.
RV32 / 64:
clmul
clmulh
clmulr
Differential Revision: https://reviews.llvm.org/D99711
Forgot to amend the Author.
Original commit message:
Header files are included in a separate patch in case the name needs to be changed.
RV32 / 64:
orc.b
Differential Revision: https://reviews.llvm.org/D99320
Implementation for RISC-V Zbr extension intrinsic.
Header files are included in separate patch in case the name needs to be changed
RV32 / 64:
crc32b
crc32h
crc32w
crc32cb
crc32ch
crc32cw
RV64 Only:
crc32d
crc32cd
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99009
Removes the prototype builtin and intrinsic for i64x2.eq and implements that
instruction as well as the other i64x2 comparison instructions in the final SIMD
spec. Unsigned comparisons were not included in the final spec, so they still
need to be scalarized via a custom lowering.
Differential Revision: https://reviews.llvm.org/D99623
Add builtin function __builtin_get_device_side_mangled_name
to get device side manged name for functions and global
variables, which can be used to get symbol address of kernels
or variables by mangled name in dynamically loaded
bundled code objects at run time.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D99301
There are a number of functions in altivec.h that use
vector __int128 which isn't supported on AIX. Those functions
need to be guarded for targets that don't support the type.
Furthermore, the functions that produce quadword instructions
without using the type need a builtin. This patch adds the
macro guards to altivec.h using the __SIZEOF_INT128__ which
is only defined on targets that support the __int128 type.
Updates the names (e.g. widen => extend, saturate => sat) and opcodes of all
SIMD instructions to match the finalized SIMD spec. Deliberately does not change
the public interface in wasm_simd128.h yet; that will require more care.
Depends on D98466.
Differential Revision: https://reviews.llvm.org/D98676
Removes the instruction definitions, intrinsics, and builtins for qfma/qfms,
signselect, and prefetch instructions, which were not included in the final
WebAssembly SIMD spec.
Depends on D98457.
Differential Revision: https://reviews.llvm.org/D98466
Previously NEON used a target specific intrinsic for frintn, given that
the FROUNDEVEN ISD node now exists, move over to that instead and add
codegen support for that node for both NEON and fixed length SVE.
Differential Revision: https://reviews.llvm.org/D98487
The MSVC runtime library doesn't have a definition for wmemchr,
so provide an inline implementation.
Differential Revision: https://reviews.llvm.org/D98472
This patch implements the __rndr and __rndrrs intrinsics to provide access to the random
number instructions introduced in Armv8.5-A. They are only defined for the AArch64
execution state and are available when __ARM_FEATURE_RNG is defined.
These intrinsics store the random number in their pointer argument and return a status
code if the generation succeeded. The difference between __rndr __rndrrs, is that the latter
intrinsic reseeds the random number generator.
The instructions write the NZCV flags indicating the success of the operation that we can
then read with a CSET.
[1] https://developer.arm.com/docs/101028/latest/data-processing-intrinsics
[2] https://bugs.llvm.org/show_bug.cgi?id=47838
Differential Revision: https://reviews.llvm.org/D98264
Change-Id: I8f92e7bf5b450e5da3e59943b53482edf0df6efc
__builtin_isinf currently generates a floating-point compare operation
which triggers a trap when faced with a signaling NaN in StrictFP mode.
This commit uses integer operations instead to not generate any trap in
such a case.
Reviewed By: mibintc
Differential Revision: https://reviews.llvm.org/D97125
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
These are incompatible with opaque pointers. This is in preparation
of dropping this API on the IRBuilder side as well.
Instead explicitly pass the loaded type.
Demonstrate how to generate vadd/vfadd intrinsic functions
1. add -gen-riscv-vector-builtins for clang builtins.
2. add -gen-riscv-vector-builtin-codegen for clang codegen.
3. add -gen-riscv-vector-header for riscv_vector.h. It also generates
ifdef directives with extension checking, base on D94403.
4. add -gen-riscv-vector-generic-header for riscv_vector_generic.h.
Generate overloading version Header for generic api.
https://github.com/riscv/rvv-intrinsic-doc/blob/master/rvv-intrinsic-rfc.md#c11-generic-interface
5. update tblgen doc for riscv related options.
riscv_vector.td also defines some unused type transformers for vadd,
because I think it could demonstrate how tranfer type work and we need
them for the whole intrinsic functions implementation in the future.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: jrtc27, craig.topper, HsiangKai, Jim, Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D95016
unsigned variable 'IntNo' has been declared but not been defined inside function
EmitWebAssemblyBuiltinExpr().
static code analysis tool complains about uninitialized variable "IntNo" since
this enters to default branch without setting any intrinsics and calls Function
*Callee = CGM.getIntrinsic(IntNo).
This patch fixes the problem by adding default cases in switch statements.
__builtin_isinf currently generates a floating-point compare operation
which triggers a trap when faced with a signaling NaN in StrictFP mode.
This commit uses integer operations instead to not generate any trap in
such a case.
Reviewed By: mibintc
Differential Revision: https://reviews.llvm.org/D97125
Demonstrate how to add RISC-V V builtins and lower them to IR intrinsics for V extension.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93446
This patch adds the following SHA3 Intrinsics:
vsha512hq_u64,
vsha512h2q_u64,
vsha512su0q_u64,
vsha512su1q_u64
veor3q_u8
veor3q_u16
veor3q_u32
veor3q_u64
veor3q_s8
veor3q_s16
veor3q_s32
veor3q_s64
vrax1q_u64
vxarq_u64
vbcaxq_u8
vbcaxq_u16
vbcaxq_u32
vbcaxq_u64
vbcaxq_s8
vbcaxq_s16
vbcaxq_s32
vbcaxq_s64
Note need to include +sha3 and +crypto when building from the front-end
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D96381
The recent commit 00a6254 "Stop traping on sNaN in builtin_isnan" changed the
lowering in constrained FP mode of builtin_isnan from an FP comparison to
integer operations to avoid trapping.
SystemZ has a special instruction "Test Data Class" which is the preferred
way to do this check. This patch adds a new target hook "testFPKind()" that
lets SystemZ emit the s390_tdc intrinsic instead.
testFPKind() takes the BuiltinID as an argument and is expected to soon
handle more opcodes than just 'builtin_isnan'.
Review: Thomas Preud'homme, Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D96568
This is a follow up of D92940.
We have successfully converted fadd/fmul _mm_reduce_* intrinsics to
llvm.reduction + reassoc flag. We can do the same approach for fmin/fmax
too, i.e. llvm.reduction + nnan flag.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93179
Intrinsics *reduce_add/mul_ps/pd have assumption that the elements in
the vector are reassociable. So we need to always assign the reassoc
flag when we call _mm_reduce_* intrinsics.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D96231
__builtin_isnan currently generates a floating-point compare operation
which triggers a trap when faced with a signaling NaN in StrictFP mode.
This commit uses integer operations instead to not generate any trap in
such a case.
Reviewed By: kpn
Differential Revision: https://reviews.llvm.org/D95948
Currently clang is not correctly retrieving from the AST the metadata for
constrained FP builtins. This patch fixes that for the X86 specific builtins.
Differential Revision: https://reviews.llvm.org/D94614