This is consistent with the clang option added in
7ed8124d46, and the comments on the
runtime patch in D87120.
Differential Revision: https://reviews.llvm.org/D87622
After the recent discussion on cfe-dev 'Can indirect class parameters be
noalias?' [1], it seems like using using noalias is problematic for
current C++, but should be allowed for C-only code.
This patch introduces a new option to let the user indicate that it is
safe to mark indirect class parameters as noalias. Note that this also
applies to external callers, e.g. it might not be safe to use this flag
for C functions that are called by C++ functions.
In targets that allocate indirect arguments in the called function, this
enables more agressive optimizations with respect to memory operations
and brings a ~1% - 2% codesize reduction for some programs.
[1] : http://lists.llvm.org/pipermail/cfe-dev/2020-July/066353.html
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D85473
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
Patch D16586 was updated to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Differential Revision: https://reviews.llvm.org/D72932
The following people contributed to this patch:
- Diogo Sampaio
- Ties Stuij
This effectively disables r340386 on Darwin, and provides a command line flag
to opt into/out of this behaviour. This change is needed to compile certain
Apple headers correctly.
rdar://47688592
Differential revision: https://reviews.llvm.org/D86881
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Note that the runtime changes will be sent separately (hopefully this
week, need to add some tests).
This patch includes the LLVM pass to instrument memory accesses with
either inline sequences to increment the access count in the shadow
location, or alternatively to call into the runtime. It also changes
calls to memset/memcpy/memmove to the equivalent runtime version.
The pass is modeled on the address sanitizer pass.
The clang changes add the driver option to invoke the new pass, and to
link with the upcoming heap profiling runtime libraries.
Currently there is no attempt to optimize the instrumentation, e.g. to
aggregate updates to the same memory allocation. That will be
implemented as follow on work.
Differential Revision: https://reviews.llvm.org/D85948
This patch defaults to -mtune=generic unless -march is present. If -march is present we'll use the empty string unless its overridden by mtune. The back should use the target cpu if the tune-cpu isn't present.
It also adds AST serialization support to fix some tests that emit AST and parse it back. These tests diff the IR against the output from not going through AST. So if we don't serialize the tune CPU we fail the diff.
Differential Revision: https://reviews.llvm.org/D86488
This patch adds the -Xclang option
"-fexperimental-debug-variable-locations" and same LLVM CodeGen option,
to pick which variable location tracking solution to use.
Right now all the switch does is pick which LiveDebugValues
implementation to use, the normal VarLoc one or the instruction
referencing one in rGae6f78824031. Over time, the aim is to add fragments
of support in aid of the value-tracking RFC:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139440.html
also controlled by this command line switch. That will slowly move
variable locations to be defined by an instruction calculating a value,
and a DBG_INSTR_REF instruction referring to that value. Thus, this is
going to grow into a "use the new kind of variable locations" switch,
rather than just "use the new LiveDebugValues implementation".
Differential Revision: https://reviews.llvm.org/D83048
Building on the backend support from D85165. This parses the command line option in the driver, passes it on to CC1 and adds a function attribute.
-Still need to support tune on the target attribute.
-Need to use "generic" as the tuning by default. But need to change generic in the backend first.
-Need to set tune if march is specified and mtune isn't.
-May need to disable getHostCPUName's ability to guess CPU name from features when it doesn't have a family/model match for mtune=native. That's what gcc appears to do.
Differential Revision: https://reviews.llvm.org/D85384
With gcc 6.3.0, I hit the following compilation bug:
/home/yhs/work/llvm-project/clang/lib/Frontend/CompilerInvocation.cpp:
In function ‘bool ParseCodeGenArgs(clang::CodeGenOptions&, llvm::opt::ArgList&,
clang::InputKind, clang::DiagnosticsEngine&, const clang::TargetOptions&,
const clang::FrontendOptions&)’:
/home/yhs/work/llvm-project/clang/lib/Frontend/CompilerInvocation.cpp:780:12:
error: unused variable ‘A’ [-Werror=unused-variable]
if (Arg *A = Args.getLastArg(OPT_fuse_ctor_homing))
^
cc1plus: all warnings being treated as errors
The bug is introduced by Commit ae6523cd62 ("[DebugInfo] Add
-fuse-ctor-homing cc1 flag so we can turn on constructor homing only
if limited debug info is already on.")
This adds a cc1 flag to enable constructor homing but doesn't turn on debug
info if it wasn't enabled already (which is what using
-debug-info-kind=constructor does). This will be used for testing, and won't
be needed anymore once ctor homing is used as default / merged into =limited.
Bug to enable ctor homing: https://bugs.llvm.org/show_bug.cgi?id=46537
Differential Revision: https://reviews.llvm.org/D85799
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
This fixes an inconsistency: clang -c -gz -fno-integrated-as means SHF_COMPRESSED
while clang -c -gz -fintegrated-as means zlib-gnu.
---
Since July 15, 2015 (binutils-gdb commit
19a7fe52ae3d0971e67a134bcb1648899e21ae1c, included in 2.26), gas
--compress-debug-sections=zlib (gcc -gz) means zlib-gabi:
SHF_COMPRESSED. Before that GCC/binutils used zlib-gnu (.zdebug).
clang's -gz was introduced in rC306115 (Jun 2017) to indicate zlib-gnu. It
is 2020 now and it is not unreasonable to assume users of the new
feature to have new linkers (ld.bfd/gold >= 2.26, lld >= rLLD273661).
Change clang's default accordingly to improve standard conformance.
zlib-gnu becomes out of fashion and gets poorer toolchain support.
Its mangled names confuse tools and are more likely to cause problems.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D61689
This way should be the same like with a.pcm for modules.
An alternative way is 'clang++ -c empty.cpp -include-pch a.pch -o a.o
-Xclang -building-pch-with-obj', which is what clang-cl's /Yc does
internally.
Differential Revision: https://reviews.llvm.org/D83716
Summary:
This patch implements parsing support for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE, version 00bet5,
section 3.7.3) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT). For example:
#if __ARM_FEATURE_SVE_BITS==512
typedef svint32_t fixed_svint32_t __attribute__((arm_sve_vector_bits(512)));
#endif
Creates a type 'fixed_svint32_t' that is a fixed-length version of
'svint32_t' that is normal-sized (rather than sizeless) and contains
exactly 512 bits. Unlike 'svint32_t', this type can be used in places
such as structs and arrays where sizeless types can't.
Implemented in this patch is the following:
* Defined and tested attribute taking single argument.
* Checks the argument is an integer constant expression.
* Attribute can only be attached to a single SVE vector or predicate
type, excluding tuple types such as svint32x4_t.
* Added the `-msve-vector-bits=<bits>` flag. When specified the
`__ARM_FEATURE_SVE_BITS__EXPERIMENTAL` macro is defined.
* Added a language option to store the vector size specified by the
`-msve-vector-bits=<bits>` flag. This is used to validate `N ==
__ARM_FEATURE_SVE_BITS`, where N is the number of bits passed to the
attribute and `__ARM_FEATURE_SVE_BITS` is the feature macro defined under
the same flag.
The `__ARM_FEATURE_SVE_BITS` macro will be made non-experimental in the final
patch of the series.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 1/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, ctetreau, cameron.mcinally, rengolin, aaron.ballman
Reviewed By: sdesmalen, aaron.ballman
Differential Revision: https://reviews.llvm.org/D83550
Summary:
-fembed-bitcode options doesn't embed warning options since they are
useless to code generation. Make sure it handles the W_value group and
not embed those options in the output.
Reviewers: zixuw, arphaman
Reviewed By: zixuw
Subscribers: jkorous, dexonsmith, ributzka, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83813
We currently have strict floating point/constrained floating point enabled
for all targets. Constrained SDAG nodes get converted to the regular ones
before reaching the target layer. In theory this should be fine.
However, the changes are exposed to users through multiple clang options
already in use in the field, and the changes are _completely_ _untested_
on almost all of our targets. Bugs have already been found, like
"https://bugs.llvm.org/show_bug.cgi?id=45274".
This patch disables constrained floating point options in clang everywhere
except X86 and SystemZ. A warning will be printed when this happens.
Use the new -fexperimental-strict-floating-point flag to force allowing
strict floating point on hosts that aren't already marked as supporting
it (X86 and SystemZ).
Differential Revision: https://reviews.llvm.org/D80952
Summary:
Keep track of -fansi-escape-codes in DiagnosticOptions and move the
option to the new option parsing system.
Depends on D82860
Reviewers: Bigcheese
Subscribers: dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82874
`ObjCRuntime` and `CommentOpts.BlockCommandNames` are checked by
`ASTReader::checkLanguageOptions`, but are not part of the module
context hash. This can lead to errors when using implicit modules if
different TUs have different values for these options when using the
same module cache.
This was not hit very often due to the rare usage of
`-fblock-command-names=` and that `ObjCRuntime` is by default set by
the target triple, which is part of the existing context hash.
Making -g[no-]column-info opt out reduces the length of a typical CC1 command line.
Additionally, in a non-debug compile, we won't see -dwarf-column-info.
Summary:
Add an `-Wundef-prefix=<arg1>,<arg2>...` option, which is similar to `-Wundef`, but only give warnings for undefined macros with the given prefixes.
Reviewers: ributzka, steven_wu, cishida, bruno, arphaman, rsmith
Reviewed By: ributzka, arphaman
Subscribers: riccibruno, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80751
This patch was authored by Zixu Wang <zixu_wang@apple.com>
Summary:
Added support for dynamic memory allocation for globalized variables in
case if execution of target regions in parallel is required.
Reviewers: jdoerfert
Subscribers: jholewinski, yaxunl, guansong, sstefan1, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82324
Summary:
When -fopenmp option is specified then version 5.0 will be set as
default.
Reviewers: gregrodgers, jdoerfert, ABataev
Reviewed By: ABataev
Subscribers: pdhaliwal, yaxunl, guansong, sstefan1, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81098
This change includes the following:
- Add additional information in the relevant table-gen files to encode
the necessary information to automatically parse the argument into a
CompilerInvocation instance and to generate the appropriate command
line argument from a CompilerInvocation instance.
- Extend OptParserEmitter to emit the necessary macro tables as well as
constant tables to support parsing and generating command line
arguments for options that provide the necessary information.
- Port some options to use this new system for parsing and generating
command line arguments.
Differential Revision: https://reviews.llvm.org/D79796
Add -fpch-instantiate-templates which makes template instantiations be
performed already in the PCH instead of it being done in every single
file that uses the PCH (but every single file will still do it as well
in order to handle its own instantiations). I can see 20-30% build
time saved with the few tests I've tried.
The change may reorder compiler output and also generated code, but
should be generally safe and produce functionally identical code.
There are some rare cases that do not compile with it,
such as test/PCH/pch-instantiate-templates-forward-decl.cpp. If
template instantiation bailed out instead of reporting the error,
these instantiations could even be postponed, which would make them
work.
Enable this by default for clang-cl. MSVC creates PCHs by compiling
them using an empty .cpp file, which means templates are instantiated
while building the PCH and so the .h needs to be self-contained,
making test/PCH/pch-instantiate-templates-forward-decl.cpp to fail
with MSVC anyway. So the option being enabled for clang-cl matches this.
Differential Revision: https://reviews.llvm.org/D69585
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
When targetting CodeView, the goal is to store argv0 & cc1 cmd-line in the emitted .OBJ, in order to allow a reproducer from the .OBJ alone.
This patch is to simplify https://reviews.llvm.org/D80833
Summary:
Add a flag to omit the xray_fn_idx to cut size overhead and relocations
roughly in half at the cost of reduced performance for single function
patching. Minor additions to compiler-rt support per-function patching
without the index.
Reviewers: dberris, MaskRay, johnislarry
Subscribers: hiraditya, arphaman, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81995
Reland https://reviews.llvm.org/D76696
All known crashes have been fixed, another attemption.
We have rolled out this to all internal users for a while, didn't see
big issues, we consider it is stable enough.
Reviewed By: sammccall
Subscribers: rsmith, hubert.reinterpretcast, ebevhan, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78350
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
- Fix failing tests under new PM and ASan and MSan issues.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
This reverts commit 2e009dbcb3.
Reverting since there were some test failures on buildbots that used the
new pass manager. ASan and MSan are also finding some bugs in this that
I'll need to address.
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
Summary:
Add -ftrivial-auto-var-init-stop-after= to limit the number of times
stack variables are initialized when -ftrivial-auto-var-init= is used to
initialize stack variables to zero or a pattern. This flag can be used
to bisect uninitialized uses of a stack variable exposed by automatic
variable initialization, such as http://crrev.com/c/2020401.
Reviewers: jfb, vitalybuka, kcc, glider, rsmith, rjmccall, pcc, eugenis, vlad.tsyrklevich
Reviewed By: jfb
Subscribers: phosek, hubert.reinterpretcast, srhines, MaskRay, george.burgess.iv, dexonsmith, inglorion, gbiv, llozano, manojgupta, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77168
This patch adds clang options:
-fbasic-block-sections={all,<filename>,labels,none} and
-funique-basic-block-section-names.
LLVM Support for basic block sections is already enabled.
+ -fbasic-block-sections={all, <file>, labels, none} : Enables/Disables basic
block sections for all or a subset of basic blocks. "labels" only enables
basic block symbols.
+ -funique-basic-block-section-names: Enables unique section names for
basic block sections, disabled by default.
Differential Revision: https://reviews.llvm.org/D68049
Canonicalize on storing FP options in LangOptions instead of
redundantly in CodeGenOptions. Incorporate -ffast-math directly
into the values of those LangOptions rather than considering it
separately when building FPOptions. Build IR attributes from
those options rather than a mix of sources.
We should really simplify the driver/cc1 interaction here and have
the driver pass down options that cc1 directly honors. That can
happen in a follow-up, though.
Patch by Michele Scandale!
https://reviews.llvm.org/D80315
-fno-semantic-interposition is currently the CC1 default. (The opposite
disables some interprocedural optimizations.) However, it does not infer
dso_local: on most targets accesses to ExternalLinkage functions/variables
defined in the current module still need PLT/GOT.
This patch makes explicit -fno-semantic-interposition infer dso_local,
so that PLT/GOT can be eliminated if targets implement local aliases
for AsmPrinter::getSymbolPreferLocal (currently only x86).
Currently we check whether the module flag "SemanticInterposition" is 0.
If yes, infer dso_local. In the future, we can infer dso_local unless
"SemanticInterposition" is 1: frontends other than clang will also
benefit from the optimization if they don't bother setting the flag.
(There will be risks if they do want ELF interposition: they need to set
"SemanticInterposition" to 1.)
Summary:
Created AIXABIInfo and AIXTargetCodeGenInfo for AIX ABI.
Reviewed By: Xiangling_L, ZarkoCA
Differential Revision: https://reviews.llvm.org/D79035
rL82131 changed -O from -O1 to -O2, because -O1 was not different from
-O2 at that time.
GCC treats -O as -O1 and there is now work to make -O1 meaningful.
We can change -O back to -O1 again.
Reviewed By: echristo, dexonsmith, arphaman
Differential Revision: https://reviews.llvm.org/D79916
Debug entry values functionality provides debug information about
call sites and function parameters values at the call entry spot.
Condition for generating this type of information is
compiling with -g option and optimization level higher
than zero(-O0).
In ISEL phase, while lowering call instructions, collect info
about registers that forward arguments into following
function frame. We store such info into MachineFunction of
the caller function. This is used very late, when dumping DWARF
info about call site parameters.
The call site info is visible at MIR level, as callSites attribute
of MachineFunction. Also, when using unmodified parameter value
inside callee it could be described as DW_OP_entry_value expression.
To deal with callSites attribute, we should pass
-emit-call-site-info option to llc.
This patch enables functionality in clang frontend and adds
call site info generation support for MIPS targets
(mips, mipsel, mips64, mips64el).
Patch by Nikola Tesic
Differential Revision: https://reviews.llvm.org/D78105
Commit 73152a2ec2 fixed type checking for
blocks with qualified id parameters. But there are existing APIs in
Apple SDKs relying on the old type checking behavior. Specifically,
these are APIs using NSItemProviderCompletionHandler in
Foundation/NSItemProvider.h. To keep existing code working and to allow
developers to use affected APIs introduce a compatibility mode that
enables the previous and the fixed type checking. This mode is enabled
only on Darwin platforms.
Reviewed By: jyknight, ahatanak
Differential Revision: https://reviews.llvm.org/D79511
gcov 4.8 (r189778) moved the exit block from the last to the second.
The .gcda format is compatible with 4.7 but
* decoding libgcov 4.7 produced .gcda with gcov [4.7,8) can mistake the
exit block, emit bogus `%s:'%s' has arcs from exit block\n` warnings,
and print wrong `" returned %s` for branch statistics (-b).
* decoding libgcov 4.8 produced .gcda with gcov 4.7 has similar issues.
Also, rename "return block" to "exit block" because the latter is the
appropriate term.
SLH doesn't support asm goto and is unlikely to ever support it. Users of asm
goto need a way to choose whether to use asm goto or fallback to an SLH
compatible code path when SLH is enabled. This feature flag will give users
this ability.
Tested via unit test
Reviewed By: mattdr
Differential Revision: https://reviews.llvm.org/D79733
This bug was observed by Apple since their compiler processes LangOpts and CGOpts in a different order.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D79735
This patch adds a matrix type to Clang as described in the draft
specification in clang/docs/MatrixSupport.rst. It introduces a new option
-fenable-matrix, which can be used to enable the matrix support.
The patch adds new MatrixType and DependentSizedMatrixType types along
with the plumbing required. Loads of and stores to pointers to matrix
values are lowered to memory operations on 1-D IR arrays. After loading,
the loaded values are cast to a vector. This ensures matrix values use
the alignment of the element type, instead of LLVM's large vector
alignment.
The operators and builtins described in the draft spec will will be added in
follow-up patches.
Reviewers: martong, rsmith, Bigcheese, anemet, dexonsmith, rjmccall, aaron.ballman
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72281
RecoveryExprs are modeled as dependent type to prevent bogus diagnostics
and crashes in clang.
This patch allows to preseve the type for broken calls when the
RecoveryEprs have a known type, e.g. a broken non-overloaded call, a
overloaded call when the all candidates have the same return type, so
that more features (code completion still work on "take2args(x).^") still
work.
However, adding the type is risky, which may result in more clang code being
affected leading to new crashes and hurt diagnostic, and it requires large
effort to minimize the affect (update all sites in clang to handle errorDepend
case), so we add a new flag (off by default) to allow us to develop/test
them incrementally.
This patch also has some trivial fixes to suppress diagnostics (to prevent regressions).
Tested:
all existing tests are passed (when both "-frecovery-ast", "-frecovery-ast-type" flags are flipped on);
Reviewed By: sammccall
Subscribers: rsmith, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79160
Defaulting to -Xclang -coverage-version='407*' makes .gcno/.gcda
compatible with gcov [4.7,8)
In addition, delete clang::CodeGenOptionsBase::CoverageExtraChecksum and GCOVOptions::UseCfgChecksum.
We can infer the information from the version.
With this change, .gcda files produced by `clang --coverage a.o` linked executable can be read by gcov 4.7~7.
We don't need other -Xclang -coverage* options.
There may be a mismatching version warning, though.
(Note, GCC r173147 "split checksum into cfg checksum and line checksum"
made gcov 4.7 incompatible with previous versions.)
rL144865 incorrectly wrote function names for GCOV_TAG_FUNCTION
(this might be part of the reasons the header says
"We emit files in a corrupt version of GCOV's "gcda" file format").
rL176173 and rL177475 realized the problem and introduced -coverage-no-function-names-in-data
to work around the issue. (However, the description is wrong.
libgcov never writes function names, even before GCC 4.2).
In reality, the linker command line has to look like:
clang --coverage -Xclang -coverage-version='407*' -Xclang -coverage-cfg-checksum -Xclang -coverage-no-function-names-in-data
Failing to pass -coverage-no-function-names-in-data can make gcov 4.7~7
either produce wrong results (for one gcov-4.9 program, I see "No executable lines")
or segfault (gcov-7).
(gcov-8 uses an incompatible format.)
This patch deletes -coverage-no-function-names-in-data and the related
function names support from libclang_rt.profile
This is a standalone patch and this would help Propeller do a better job of code
layout as it can accurately attribute the profiles to the right internal linkage
function.
This also helps SampledFDO/AutoFDO correctly associate sampled profiles to the
right internal function. Currently, if there is more than one internal symbol
foo, their profiles are aggregated by SampledFDO.
This patch adds a new clang option, -funique-internal-funcnames, to generate
unique names for functions with internal linkage. This patch appends the md5
hash of the module name to the function symbol as a best effort to generate a
unique name for symbols with internal linkage.
Differential Revision: https://reviews.llvm.org/D73307
test cases
Add support for #pragma float_control
Reviewers: rjmccall, erichkeane, sepavloff
Differential Revision: https://reviews.llvm.org/D72841
This reverts commit 85dc033cac, and makes
corrections to the test cases that failed on buildbots.
Summary:
Add an option to enable on-demand parsing of needed ASTs during CTU analysis.
Two options are introduced. CTUOnDemandParsing enables the feature, and
CTUOnDemandParsingDatabase specifies the path to a compilation database, which
has all the necessary information to generate the ASTs.
Reviewers: martong, balazske, Szelethus, xazax.hun
Subscribers: ormris, mgorny, whisperity, xazax.hun, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, Charusso, steakhal, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75665
Summary:
Change the default ABI to be compatible with GCC. For 32-bit ELF
targets other than Linux, Clang now returns small structs in registers
r3/r4. This affects FreeBSD, NetBSD, OpenBSD. There is no change for
32-bit Linux, where Clang continues to return all structs in memory.
Add clang options -maix-struct-return (to return structs in memory) and
-msvr4-struct-return (to return structs in registers) to be compatible
with gcc. These options are only for PPC32; reject them on PPC64 and
other targets. The options are like -fpcc-struct-return and
-freg-struct-return for X86_32, and use similar code.
To actually return a struct in registers, coerce it to an integer of the
same size. LLVM may optimize the code to remove unnecessary accesses to
memory, and will return i32 in r3 or i64 in r3:r4.
Fixes PR#40736
Patch by George Koehler!
Reviewed By: jhibbits, nemanjai
Differential Revision: https://reviews.llvm.org/D73290
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Prior to this change the clang interface stubs format resembled
something ending with a symbol list like this:
Symbols:
a: { Type: Func }
This was problematic because we didn't actually want a map format and
also because we didn't like that an empty symbol list required
"Symbols: {}". That is to say without the empty {} llvm-ifs would crash
on an empty list.
With this new format it is much more clear which field is the symbol
name, and instead the [] that is used to express an empty symbol vector
is optional, ie:
Symbols:
- { Name: a, Type: Func }
or
Symbols: []
or
Symbols:
This further diverges the format from existing llvm-elftapi. This is a
good thing because although the format originally came from the same
place, they are not the same in any way.
Differential Revision: https://reviews.llvm.org/D76979
The driver enables -fdiagnostics-show-option by default, so flip the CC1
default to reduce the lengths of common CC1 command lines.
This change also makes ParseDiagnosticArgs() consistently enable
-fdiagnostics-show-option by default.
Summary:
CGProfilePass is run by default in certain new pass manager optimization pipeline. Assemblers other than llvm as (such as gnu as) cannot recognize the .cgprofile entries generated and emitted from this pass, causing build time error.
This patch adds new options in clang CodeGenOpts and PassBuilder options so that we can turn cgprofile off when not using integrated assembler.
Reviewers: Bigcheese, xur, george.burgess.iv, chandlerc, manojgupta
Reviewed By: manojgupta
Subscribers: manojgupta, void, hiraditya, dexonsmith, llvm-commits, tcwang, llozano
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62627
This reverts commit 0788acbccb.
This reverts commit c2d7a1f79cedfc9fcb518596aa839da4de0adb69: Revert "[clangd] Add test for FindTarget+RecoveryExpr (which already works). NFC"
It causes a crash on invalid code:
class X {
decltype(unresolved()) foo;
};
constexpr int s = sizeof(X);
Normally clang avoids creating expressions when it encounters semantic
errors, even if the parser knows which expression to produce.
This works well for the compiler. However, this is not ideal for
source-level tools that have to deal with broken code, e.g. clangd is
not able to provide navigation features even for names that compiler
knows how to resolve.
The new RecoveryExpr aims to capture the minimal set of information
useful for the tools that need to deal with incorrect code:
source range of the expression being dropped,
subexpressions of the expression.
We aim to make constructing RecoveryExprs as simple as possible to
ensure writing code to avoid dropping expressions is easy.
Producing RecoveryExprs can result in new code paths being taken in the
frontend. In particular, clang can produce some new diagnostics now and
we aim to suppress bogus ones based on Expr::containsErrors.
We deliberately produce RecoveryExprs only in the parser for now to
minimize the code affected by this patch. Producing RecoveryExprs in
Sema potentially allows to preserve more information (e.g. type of an
expression), but also results in more code being affected. E.g.
SFINAE checks will have to take presence of RecoveryExprs into account.
Initial implementation only works in C++ mode, as it relies on compiler
postponing diagnostics on dependent expressions. C and ObjC often do not
do this, so they require more work to make sure we do not produce too
many bogus diagnostics on the new expressions.
See documentation of RecoveryExpr for more details.
original patch from Ilya
This change is based on https://reviews.llvm.org/D61722
Reviewers: sammccall, rsmith
Reviewed By: sammccall, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69330
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
This flag is used by avr-gcc (starting with v10) to set the width of the
double type. The double type is by default interpreted as a 32-bit
floating point number in avr-gcc instead of a 64-bit floating point
number as is common on other architectures. Starting with GCC 10, a new
option has been added to control this behavior:
https://gcc.gnu.org/wiki/avr-gcc#Deviations_from_the_Standard
This commit keeps the default double at 32 bits but adds support for the
-mdouble flag (-mdouble=32 and -mdouble=64) to control this behavior.
Differential Revision: https://reviews.llvm.org/D76181
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
The -fsystem-module flag is used when explicitly building a module. It
forces the module to be treated as a system module. This is used when
converting an implicit build to an explicit build to match the
systemness the implicit build would have had for a given module.
Differential Revision: https://reviews.llvm.org/D75395
This reverts commit 0a9fc9233e.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
Signed-off-by: Alexey Bader <alexey.bader@intel.com>
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
This is trying to implement the functionality proposed in:
http://lists.llvm.org/pipermail/cfe-dev/2017-April/053417.html
An exception can throw, but no cleanup is going to happen.
A module compiled with exceptions on, can catch the exception throws
from module compiled with -fignore-exceptions.
The use cases for enabling this option are:
1. Performance analysis of EH instrumentation overhead
2. The ability to QA non EH functionality when EH functionality is not available.
3. User of EH enabled headers knows the calls won't throw in their program and
wants the performance gain from ignoring EH construct.
The implementation tried to accomplish that by removing any landing pad code
that might get generated.
Reviewed by: aaron.ballman
Differential Revision: https://reviews.llvm.org/D72644
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
The function attributes xray-skip-entry, xray-skip-exit, and
xray-ignore-loops were only being applied if a function had an
xray-instrument attribute, but they should apply if xray is enabled
globally too.
Differential Revision: https://reviews.llvm.org/D73842
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Summary:
Following the AAPCS, every store to a volatile bit-field requires to generate one load of that field, even if all the bits are going to be replaced.
This patch allows the user to opt-in in following such rule, whenever the a.
AAPCS Release 2019Q1.1 (https://static.docs.arm.com/ihi0042/g/aapcs32.pdf)
section 8.1 Data Types, page 35, paragraph: Volatile bit-fields – preserving number and width of container accesses
```
When a volatile bit-field is written, and its container does not overlap with any non-bit-field member, its
container must be read exactly once and written exactly once using the access width appropriate to the
type of the container. The two accesses are not atomic.
```
Reviewers: lebedev.ri, ostannard, jfb, eli.friedman
Reviewed By: jfb
Subscribers: rsmith, rjmccall, dexonsmith, kristof.beyls, jfb, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67399
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
This reverts commits f41ec709d9 and 5fedc2b410. On some buildbots, Clang :: Driver/crash-report.c is broken with:
```
Command Output (stderr):
--
/home/buildslave/ps4-buildslave1/clang-with-thin-lto-ubuntu/llvm-project/clang/test/Driver/crash-report.c:48:11: error: CHECK: expected string not found in input
// CHECK: Preprocessed source(s) and associated run script(s) are located at:
^
<stdin>:1:1: note: scanning from here
/home/buildslave/ps4-buildslave1/clang-with-thin-lto-ubuntu/llvm-project/clang/test/Driver/crash-report.c:50:1: error: unknown type name 'BAZ'
```
Example: http://lab.llvm.org:8011/builders/clang-with-thin-lto-ubuntu/builds/21321/steps/test-stage1-compiler/logs/stdio
Previously, when the above '#pragma clang __debug' were used, Driver::generateCompilationDiagnostics() wouldn't work as expected.
The 'clang -E' process created for diagnostics would crash, because it would reach again the intended crash in Pragma.cpp, PragmaDebugHandler::HandlePragma() while preprocessing.
When generating crash diagnostics, we now disable the intended crashing behavior with a new cc1 flag -disable-pragma-debug-crash.
Notes:
- #pragma clang __debug llvm_report_fatal isn't currently tested by crash-report.c, because it needs exit() to be handled differently in -fintegrated-cc1 mode. See https://reviews.llvm.org/D73742 for an upcoming fix.
- This is also needed to further validate that -MF is removed from the 'clang -E ' crash diagnostic cmd-line (currently not the case). See https://reviews.llvm.org/D74076 for an upcoming fix.
Differential Revision: https://reviews.llvm.org/D74070
Summary:
- The device compilation needs to have a consistent source code compared
to the corresponding host compilation. If macros based on the
host-specific target processor is not properly populated, the device
compilation may fail due to the inconsistent source after the
preprocessor. So far, only the host triple is used to build the
macros. If a detailed host CPU target or certain features are
specified, macros derived from them won't be populated properly, e.g.
`__SSE3__` won't be added unless `+sse3` feature is present. On
Windows compilation compatible with MSVC, that missing macros result
in that intrinsics are not included and cause device compilation
failure on the host-side source.
- This patch addresses this issue by introducing two `cc1` options,
i.e., `-aux-target-cpu` and `-aux-target-feature`. If a specific host
CPU target or certain features are specified, the compiler driver will
append them during the construction of the offline compilation
actions. Then, the toolchain in `cc1` phase will populate macros
accordingly.
- An internal option `--gpu-use-aux-triple-only` is added to fall back
the original behavior to help diagnosing potential issues from the new
behavior.
Reviewers: tra, yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73942
AMDGPU and x86 at least both have separate controls for whether
denormal results are flushed on output, and for whether denormals are
implicitly treated as 0 as an input. The current DAGCombiner use only
really cares about the input treatment of denormals.
Driver errors if -fomit-frame-pointer is used together with -pg.
useFramePointerForTargetByDefault() returns true if -pg is specified.
=>
(!OmitFP && useFramePointerForTargetByDefault(Args, Triple)) is true
=>
We cannot get FramePointerKind::None
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
With LLVM_APPEND_VC_REV=NO, Modules/merge-lifetime-extended-temporary.cpp
would fail if it ran before a0f50d7316 (which changed
the serialization format) and then after, for these reasons:
1. With LLVM_APPEND_VC_REV=NO, the module hash before and after the
change was the same.
2. Modules/merge-lifetime-extended-temporary.cpp is the only test
we have that uses -fmodule-cache-path=%t that
a) actually writes to the cache path
b) doesn't do `rm -rf %t` at the top of the test
So the old run would write a module file, and then the new run would
try to load it, but the serialized format changed.
Do several things to fix this:
1. Include clang::serialization::VERSION_MAJOR/VERSION_MINOR in
the module hash, so that when the AST format changes (...and
we remember to bump these), we use a different module cache dir.
2. Bump VERSION_MAJOR, since a0f50d7316 changed the
on-disk format in a way that a gch file written before that change
can't be read after that change.
3. Add `rm -rf %t` to all tests that pass -fmodule-cache-path=%t.
This is unnecessary from a correctness PoV after 1 and 2,
but makes it so that we don't amass many cache dirs over time.
(Arguably, it also makes it so that the test suite doesn't catch
when we change the serialization format but don't bump
clang::serialization::VERSION_MAJOR/VERSION_MINOR; oh well.)
Differential Revision: https://reviews.llvm.org/D73202
See
https://docs.google.com/document/d/1xMkTZMKx9llnMPgso0jrx3ankI4cv60xeZ0y4ksf4wc/preview
for background discussion.
This adds a warning, flags and pragmas to limit the number of
pre-processor tokens either at a certain point in a translation unit, or
overall.
The idea is that this would allow projects to limit the size of certain
widely included headers, or for translation units overall, as a way to
insert backstops for header bloat and prevent compile-time regressions.
Differential revision: https://reviews.llvm.org/D72703
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
Add a simple cache for constraint satisfaction results. Whether or not this simple caching
would be permitted in final C++2a is currently being discussed but it is required for
acceptable performance so we use it in the meantime, with the possibility of adding some
cache invalidation mechanisms later.
Differential Revision: https://reviews.llvm.org/D72552
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.
- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute
AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).
Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.
Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.
-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.
Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.
This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.
AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
XRay allows tuning by minimum function size, but also always instruments
functions with loops in them. If the minimum function size is set to a
large value the loop instrumention ends up causing most functions to be
instrumented anyway. This adds a new flag, -fxray-ignore-loops, to disable
the loop detection logic.
Differential Revision: https://reviews.llvm.org/D72873
The option will limit debug info by only emitting complete class
type information when its constructor is emitted.
This patch changes comparisons with LimitedDebugInfo to use the new
level instead.
Differential Revision: https://reviews.llvm.org/D72427
which is the default TLS model for non-PIC objects. This allows large/
many thread local variables or a compact/fast code in an executable.
Specification is same as that of GCC. For example, the code model
option precedes the TLS size option.
TLS access models other than local-exec are not changed. It means
supoort of the large code model is only in the local exec TLS model.
Patch By KAWASHIMA Takahiro (kawashima-fj <t-kawashima@fujitsu.com>)
Reviewers: dmgreen, mstorsjo, t.p.northover, peter.smith, ostannard
Reviewd By: peter.smith
Committed by: peter.smith
Differential Revision: https://reviews.llvm.org/D71688
In the backend, this feature is implemented with the function attribute
"patchable-function-entry". Both the attribute and XRay use
TargetOpcode::PATCHABLE_FUNCTION_ENTER, so the two features are
incompatible.
Reviewed By: ostannard, MaskRay
Differential Revision: https://reviews.llvm.org/D72222
getLastArgIntValue is a useful utility function to get command line argument as an integer.
Currently it is in Frontend so that it can only be used by clang -cc1. Move it to basic so
that it can also be used by clang driver.
Differential Revision: https://reviews.llvm.org/D71080
Recognize -mrecord-mcount from the command line and add a function attribute
"mrecord-mcount" when passed.
Only valid on SystemZ (when used with -mfentry).
Review: Ulrich Weigand
https://reviews.llvm.org/D71627
Our build system does not handle randomly named files created during
the build well. We'd prefer to write compilation output directly
without creating a temporary file. Function parameters already
existed to control this behavior but were not exposed all the way out
to the command line.
Patch by Zachary Henkel!
Differential revision: https://reviews.llvm.org/D70615
Recognize -mpacked-stack from the command line and add a function attribute
"mpacked-stack" when passed. This is needed for building the Linux kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D71441
Very few ELF platforms still use .ctors/.dtors now. Linux (glibc: 1999-07),
DragonFlyBSD, FreeBSD (2012-03) and Solaris have supported .init_array
for many years. Some architectures like AArch64/RISC-V default to
.init_array . GNU ld and gold can even convert .ctors to .init_array .
It makes more sense to flip the CC1 default, and only uses
-fno-use-init-array on platforms that don't support .init_array .
For example, OpenBSD did not support DT_INIT_ARRAY before Aug 2016
(86fa57a279)
I may miss some ELF platforms that still use .ctors, but their
maintainers can easily diagnose such problems.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71393
This is a follow up patch to use the OpenMP-IR-Builder, as discussed on
the mailing list ([1] and later) and at the US Dev Meeting'19.
[1] http://lists.flang-compiler.org/pipermail/flang-dev_lists.flang-compiler.org/2019-May/000197.html
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69922
Summary:
D30644 added OpenMP offloading to AArch64 targets, then D32035 changed the
frontend to throw an error when offloading is requested for an unsupported
target architecture. However the latter did not include AArch64 in the list
of supported architectures, causing the following unit tests to fail:
libomptarget :: api/omp_get_num_devices.c
libomptarget :: mapping/pr38704.c
libomptarget :: offloading/offloading_success.c
libomptarget :: offloading/offloading_success.cpp
Reviewers: pawosm01, gtbercea, jdoerfert, ABataev
Subscribers: kristof.beyls, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70804
Patch was reverted because https://bugs.llvm.org/show_bug.cgi?id=44048
The original patch is modified to set the strictfp IR attribute
explicitly in CodeGen instead of as a side effect of IRBuilder.
In the 2nd attempt to reapply there was a windows lit test fail, the
tests were fixed to use wildcard matching.
Differential Revision: https://reviews.llvm.org/D62731
Summary:
Removed the ```-fforce-experimental-new-constant-interpreter flag```, leaving
only the ```-fexperimental-new-constant-interpreter``` one. The interpreter
now always emits an error on an unsupported feature.
Allowing the interpreter to bail out would require a mapping from APValue to
interpreter memory, which will not be necessary in the final version. It is
more sensible to always emit an error if the interpreter fails.
Reviewers: jfb, Bigcheese, rsmith, dexonsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70071
GCC 8 implements -fmacro-prefix-map. Like -fdebug-prefix-map, it replaces a string prefix for the __FILE__ macro.
-ffile-prefix-map is the union of -fdebug-prefix-map and -fmacro-prefix-map
Reviewed By: rnk, Lekensteyn, maskray
Differential Revision: https://reviews.llvm.org/D49466
The CUDA builtin library is apparently compiled in C++ mode, so the
assumption of convergent needs to be made in a typically non-SPMD
language. The functions in the library should still be assumed
convergent. Currently they are not, which is potentially incorrect and
this happens to work after the library is linked.
Cleanup handling of the denormal-fp-math attribute. Consolidate places
checking the allowed names in one place.
This is in preparation for introducing FP type specific variants of
the denormal-fp-mode attribute. AMDGPU will switch to using this in
place of the current hacky use of subtarget features for the denormal
mode.
Introduce a new header for dealing with FP modes. The constrained
intrinsic classes define related enums that should also be moved into
this header for uses in other contexts.
The verifier could use a check to make sure the denorm-fp-mode
attribute is sane, but there currently isn't one.
Currently, DAGCombiner incorrectly asssumes non-IEEE behavior by
default in the one current user. Clang must be taught to start
emitting this attribute by default to avoid regressions when this is
switched to assume ieee behavior if the attribute isn't present.
and a follow-up NFC rearrangement as it's causing a crash on valid. Testcase is on the original review thread.
This reverts commits af57dbf12e and e6584b2b7b
Previously these were reported from the driver which blocked clang-scan-deps from getting the full set of dependencies from cc1 commands.
Also the default sanitizer blacklist that is added in driver was never reported as a dependency. I introduced -fsanitize-system-blacklist cc1 option to keep track of which blacklists were user-specified and which were added by driver and clang -MD now also reports system blacklists as dependencies.
Differential Revision: https://reviews.llvm.org/D69290
Add options to control floating point behavior: trapping and
exception behavior, rounding, and control of optimizations that affect
floating point calculations. More details in UsersManual.rst.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D62731
Recognize -mnop-mcount from the command line and add a function attribute
"mnop-mcount"="true" when passed.
When this option is used, a nop is added instead of a call to fentry. This
is used when building the Linux Kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D67763
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
This adds a flag to LLVM and clang to always generate a .debug_frame
section, even if other debug information is not being generated. In
situations where .eh_frame would normally be emitted, both .debug_frame
and .eh_frame will be used.
Differential Revision: https://reviews.llvm.org/D67216
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
Add this option to allow device side class type global variables
with non-trivial ctor/dtor. device side init/fini functions will
be emitted, which will be executed by HIP runtime when
the fat binary is loaded/unloaded.
This feature is to facilitate implementation of device side
sanitizer which requires global vars with non-trival ctors.
By default this option is disabled.
Differential Revision: https://reviews.llvm.org/D69268
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
llvm-svn: 374841
The goal is to have 100% fidelity in clang-scan-deps behavior when
--analyze is present in compilation command.
At the same time I don't want to break clang-tidy which expects
__static_analyzer__ macro defined as built-in.
I introduce new cc1 options (-setup-static-analyzer) that controls
the macro definition and is conditionally set in driver.
Differential Revision: https://reviews.llvm.org/D68093
llvm-svn: 374815
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
I noticed that compiling on Windows with -fno-ms-compatibility had the
side effect of defining __GNUC__, along with __GNUG__, __GXX_RTTI__, and
a number of other macros for GCC compatibility. This is undesirable and
causes Chromium to do things like mix __attribute__ and __declspec,
which doesn't work. We should have a positive language option to enable
GCC compatibility features so that we can experiment with
-fno-ms-compatibility on Windows. This change adds -fgnuc-version= to be
that option.
My issue aside, users have, for a long time, reported that __GNUC__
doesn't match their expectations in one way or another. We have
encouraged users to migrate code away from this macro, but new code
continues to be written assuming a GCC-only environment. There's really
nothing we can do to stop that. By adding this flag, we can allow them
to choose their own adventure with __GNUC__.
This overlaps a bit with the "GNUMode" language option from -std=gnu*.
The gnu language mode tends to enable non-conforming behaviors that we'd
rather not enable by default, but the we want to set things like
__GXX_RTTI__ by default, so I've kept these separate.
Helps address PR42817
Reviewed By: hans, nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D68055
llvm-svn: 374449
ARM and AArch64 SelectionDAG support for tacking parameter forwarding
register is implemented so we can allow clang invocations for those two
targets.
Beside that restrict debug entry value support to be emitted for
LimitedDebugInfo info and FullDebugInfo. Other types of debug info do
not have functions nor variables debug info.
Reviewers: aprantl, probinson, dstenb, vsk
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D67004
llvm-svn: 374153
Second Landing Attempt:
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 374061
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 373538
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 371834
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
This reinstates r371805, reverted in r371813, with an additional fix for
lldb.
llvm-svn: 371817
levels:
-- none: no lax vector conversions [new GCC default]
-- integer: only conversions between integer vectors [old GCC default]
-- all: all conversions between same-size vectors [Clang default]
For now, Clang still defaults to "all" mode, but per my proposal on
cfe-dev (2019-04-10) the default will be changed to "integer" as soon as
that doesn't break lots of testcases. (Eventually I'd like to change the
default to "none" to match GCC and general sanity.)
Following GCC's behavior, the driver flag -flax-vector-conversions is
translated to -flax-vector-conversions=integer.
llvm-svn: 371805
Traditionally, clang-tidy uses the term check, and the analyzer uses checker,
but in the very early years, this wasn't the case, and code originating from the
early 2010's still incorrectly refer to checkers as checks.
This patch attempts to hunt down most of these, aiming to refer to checkers as
checkers, but preserve references to callback functions (like checkPreCall) as
checks.
Differential Revision: https://reviews.llvm.org/D67140
llvm-svn: 371760
Summary:
This adds `-fwasm-exceptions` (in similar fashion with
`-fdwarf-exceptions` or `-fsjlj-exceptions`) that turns on everything
with wasm exception handling from the frontend to the backend.
We currently have `-mexception-handling` in clang frontend, but this is
only about the architecture capability and does not turn on other
necessary options such as the exception model in the backend. (This can
be turned on with `llc -exception-model=wasm`, but llc is not invoked
separately as a command line tool, so this option has to be transferred
from clang.)
Turning on `-fwasm-exceptions` in clang also turns on
`-mexception-handling` if not specified, and will error out if
`-mno-exception-handling` is specified.
Reviewers: dschuff, tlively, sbc100
Subscribers: aprantl, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67208
llvm-svn: 371708
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
As far as I can tell, gcc passes 256/512 bit vectors __int128 in memory. And passes a vector of 1 _int128 in an xmm register. The backend considers <X x i128> as an illegal type and will scalarize any arguments with that type. So we need to coerce the argument types in the frontend to match to avoid the illegal type.
I'm restricting this to change to Linux and NetBSD based on the
how similar ABI changes have been handled in the past.
PS4, FreeBSD, and Darwin are unaffected. I've also added a
new -fclang-abi-compat version to restore the old behavior.
This issue was identified in PR42607. Though even with the types changed, we still seem to be doing some unnecessary stack realignment.
llvm-svn: 371169
Summary:
This significantly reduces the time required to run clangd tests, by
~10%.
Should also have an effect on other tests that run command-line parsing
multiple times inside a single invocation.
Reviewers: gribozavr, sammccall
Reviewed By: sammccall
Subscribers: kadircet, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67163
llvm-svn: 370908
Breaks BUILD_SHARED_LIBS build, introduces cycles in library dependency
graphs. (clangInterp depends on clangAST which depends on clangInterp)
This reverts r370839, which is an yet another recommit of D64146.
llvm-svn: 370874
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370839
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370636
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370584
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370531
Summary:
This patch introduces the skeleton of the constexpr interpreter,
capable of evaluating a simple constexpr functions consisting of
if statements. The interpreter is described in more detail in the
RFC. Further patches will add more features.
Reviewers: Bigcheese, jfb, rsmith
Subscribers: bruno, uenoku, ldionne, Tyker, thegameg, tschuett, dexonsmith, mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64146
llvm-svn: 370476
I've been working on a new tool, llvm-ifs, for merging interface stub files
generated by clang and I've iterated on my derivative format of TBE to a newer
format. llvm-ifs will only support the new format, so I am going to drop the
older experimental interface stubs formats in this commit to make things
simpler.
Differential Revision: https://reviews.llvm.org/D66573
llvm-svn: 369719
After posting llvm-ifs on phabricator, I made some progress in hardening up how
I think the format for Interface Stubs should look. There are a number of
things I think the TBE format was missing (no endianness, no info about the
Object Format because it assumes ELF), so I have added those and broken off
from being as similar to the TBE schema. In a subsequent commit I can drop the
other formats.
An example of how The format will look is as follows:
--- !experimental-ifs-v1
IfsVersion: 1.0
Triple: x86_64-unknown-linux-gnu
ObjectFileFormat: ELF
Symbols:
_Z9nothiddenv: { Type: Func }
_Z10cmdVisiblev: { Type: Func }
...
The format is still marked experimental.
Differential Revision: https://reviews.llvm.org/D66446
llvm-svn: 369715
Summary:
This patch introduces a new `analyzer-config` configuration:
`-analyzer-config silence-checkers`
which could be used to silence the given checkers.
It accepts a semicolon separated list, packed into quotation marks, e.g:
`-analyzer-config silence-checkers="core.DivideZero;core.NullDereference"`
It could be used to "disable" core checkers, so they model the analysis as
before, just if some of them are too noisy it prevents to emit reports.
This patch also adds support for that new option to the scan-build.
Passing the option `-disable-checker core.DivideZero` to the scan-build
will be transferred to `-analyzer-config silence-checkers=core.DivideZero`.
Reviewed By: NoQ, Szelethus
Differential Revision: https://reviews.llvm.org/D66042
llvm-svn: 369078
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
This patch is a prerequisite for using LangStandard from Driver in
https://reviews.llvm.org/D64793.
It moves LangStandard* and InputKind::Language to Basic. It is mostly
mechanical, with only a few changes of note:
- enum Language has been changed into enum class Language : uint8_t to
avoid a clash between OpenCL in enum Language and OpenCL in enum
LangFeatures and not to increase the size of class InputKind.
- Now that getLangStandardForName, which is currently unused, also checks
both canonical and alias names, I've introduced a helper getLangKind
which factors out a code pattern already used 3 times.
The patch has been tested on x86_64-pc-solaris2.11, sparcv9-sun-solaris2.11,
and x86_64-pc-linux-gnu.
There's a companion patch for lldb which uses LangStandard.h
(https://reviews.llvm.org/D65717).
While polly includes isl which in turn uses InputKind::C, that part of the
code isn't even built inside the llvm tree. I've posted a patch to allow
for both InputKind::C and Language::C upstream
(https://groups.google.com/forum/#!topic/isl-development/6oEvNWOSQFE).
Differential Revision: https://reviews.llvm.org/D65562
llvm-svn: 367864
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
Rename lang mode flag to -cl-std=clc++/-cl-std=CLC++
or -std=clc++/-std=CLC++.
This aligns with OpenCL C conversion and removes ambiguity
with OpenCL C++.
Differential Revision: https://reviews.llvm.org/D65102
llvm-svn: 367008
Summary:
Move `-ftime-trace-granularity` option to frontend options. Without patch
this option is showed up in the help for any tool that links libSupport.
Reviewers: sammccall
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65202
llvm-svn: 366911
with '-mframe-pointer'
After D56351 and D64294, frame pointer handling is migrated to tri-state
(all, non-leaf, none) in clang driver and on the function attribute.
This patch makes the frame pointer handling cc1 option tri-state.
Reviewers: chandlerc, rnk, t.p.northover, MaskRay
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D56353
llvm-svn: 366645
gcc PowerPC supports 3 representations of long double:
* -mlong-double-64
long double has the same representation of double but is mangled as `e`.
In clang, this is the default on AIX, FreeBSD and Linux musl.
* -mlong-double-128
2 possible 128-bit floating point representations:
+ -mabi=ibmlongdouble
IBM extended double format. Mangled as `g`
In clang, this is the default on Linux glibc.
+ -mabi=ieeelongdouble
IEEE 754 quadruple-precision format. Mangled as `u9__ieee128` (`U10__float128` before gcc 8.2)
This is currently unavailable.
This patch adds -mabi=ibmlongdouble and -mabi=ieeelongdouble, and thus
makes the IEEE 754 quadruple-precision long double available for
languages supported by clang.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D64283
llvm-svn: 366044
This patch makes the driver option -mlong-double-128 available for X86
and PowerPC. The CC1 option -mlong-double-128 is available on all targets
for users to test on unsupported targets.
On PowerPC, -mlong-double-128 uses the IBM extended double format
because we don't support -mabi=ieeelongdouble yet (D64283).
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D64277
llvm-svn: 365866
-mlong-double-64 is supported on some ports of gcc (i386, x86_64, and ppc{32,64}).
On many other targets, there will be an error:
error: unrecognized command line option '-mlong-double-64'
This patch makes the driver option -mlong-double-64 available for x86
and ppc. The CC1 option -mlong-double-64 is available on all targets for
users to test on unsupported targets.
LongDoubleSize is added as a VALUE_LANGOPT so that the option can be
shared with -mlong-double-128 when we support it in clang.
Also, make powerpc*-linux-musl default to use 64-bit long double. It is
currently the only supported ABI on musl and is also how people
configure powerpc*-linux-musl-gcc.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D64067
llvm-svn: 365412
Summary:
The changes in D59673 made the choice redundant, since we can achieve
single-file split DWARF just by not setting an output file name.
Like llc we can also derive whether to enable Split DWARF from whether
-split-dwarf-file is set, so we don't need the flag at all anymore.
The test CodeGen/split-debug-filename.c distinguished between having set
or not set -enable-split-dwarf with -split-dwarf-file, but we can
probably just always emit the metadata into the IR.
The flag -split-dwarf wasn't used at all anymore.
Reviewers: dblaikie, echristo
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D63167
llvm-svn: 364479
The option enables debug info about parameter's entry values.
The example of using the option:
clang -g -O2 -Xclang -femit-debug-entry-values test.c
In addition, when the option is set add the flag all_call_sites
in a subprogram in order to support GNU extension as well.
([3/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58033
llvm-svn: 364399
This change reverts r363649; effectively re-landing r363626. At this point
clang::Index::CodegenNameGeneratorImpl has been refactored into
clang::AST::ASTNameGenerator. This makes it so that the previous circular link
dependency no longer exists, fixing the previous share lib
(-DBUILD_SHARED_LIBS=ON) build issue which was the reason for r363649.
Clang interface stubs (previously referred to as clang-ifsos) is a new frontend
action in clang that allows the generation of stub files that contain mangled
name info that can be used to produce a stub library. These stub libraries can
be useful for breaking up build dependencies and controlling access to a
library's internal symbols. Generation of these stubs can be invoked by:
clang -fvisibility=<visibility> -emit-interface-stubs \
-interface-stub-version=<interface format>
Notice that -fvisibility (along with use of visibility attributes) can be used
to control what symbols get generated. Currently the interface format is
experimental but there are a wide range of possibilities here.
Currently clang-ifs produces .ifs files that can be thought of as analogous to
object (.o) files, but just for the mangled symbol info. In a subsequent patch
I intend to add support for merging the .ifs files into one .ifs/.ifso file
that can be the input to something like llvm-elfabi to produce something like a
.so file or .dll (but without any of the code, just symbols).
Differential Revision: https://reviews.llvm.org/D60974
llvm-svn: 363948
Using the -fdeclare-opencl-builtins option will require a way to
predefine types and macros such as `int4`, `CLK_GLOBAL_MEM_FENCE`,
etc. Move these out of opencl-c.h into opencl-c-base.h such that the
latter can be shared by -fdeclare-opencl-builtins and
-finclude-default-header.
This changes the behaviour of -finclude-default-header when
-fdeclare-opencl-builtins is specified: instead of including the full
header, it will include the header with only the base definitions.
Differential revision: https://reviews.llvm.org/D63256
llvm-svn: 363794
This reverts commit rC363626.
clangIndex depends on clangFrontend. r363626 adds a dependency from
clangFrontend to clangIndex, which creates a circular dependency.
This is disallowed by -DBUILD_SHARED_LIBS=on builds:
CMake Error: The inter-target dependency graph contains the following strongly connected component (cycle):
"clangFrontend" of type SHARED_LIBRARY
depends on "clangIndex" (weak)
"clangIndex" of type SHARED_LIBRARY
depends on "clangFrontend" (weak)
At least one of these targets is not a STATIC_LIBRARY. Cyclic dependencies are allowed only among static libraries.
Note, the dependency on clangIndex cannot be removed because
libclangFrontend.so is linked with -Wl,-z,defs: a shared object must
have its full direct dependencies specified on the linker command line.
In -DBUILD_SHARED_LIBS=off builds, this appears to work when linking
`bin/clang-9`. However, it can cause trouble to downstream clang library
users. The llvm build system links libraries this way:
clang main_program_object_file ... lib/libclangIndex.a ... lib/libclangFrontend.a -o exe
libclangIndex.a etc are not wrapped in --start-group.
If the downstream application depends on libclangFrontend.a but not any
other clang libraries that depend on libclangIndex.a, this can cause undefined
reference errors when the linker is ld.bfd or gold.
The proper fix is to not include clangIndex files in clangFrontend.
llvm-svn: 363649
Clang interface stubs (previously referred to as clang-ifsos) is a new frontend
action in clang that allows the generation of stub files that contain mangled
name info that can be used to produce a stub library. These stub libraries can
be useful for breaking up build dependencies and controlling access to a
library's internal symbols. Generation of these stubs can be invoked by:
clang -fvisibility=<visibility> -emit-interface-stubs \
-interface-stub-version=<interface format>
Notice that -fvisibility (along with use of visibility attributes) can be used
to control what symbols get generated. Currently the interface format is
experimental but there are a wide range of possibilities here.
Differential Revision: https://reviews.llvm.org/D60974
llvm-svn: 363626
Use -fsave-optimization-record=<format> to specify a different format
than the default, which is YAML.
For now, only YAML is supported.
llvm-svn: 363573
Summary:
With Split DWARF the resulting object file (then called skeleton CU)
contains the file name of another ("DWO") file with the debug info.
This can be a problem for remote compilation, as it will contain the
name of the file on the compilation server, not on the client.
To use Split DWARF with remote compilation, one needs to either
* make sure only relative paths are used, and mirror the build directory
structure of the client on the server,
* inject the desired file name on the client directly.
Since llc already supports the latter solution, we're just copying that
over. We allow setting the actual output filename separately from the
value of the DW_AT_[GNU_]dwo_name attribute in the skeleton CU.
Fixes PR40276.
Reviewers: dblaikie, echristo, tejohnson
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D59673
llvm-svn: 363496
Summary:
This is the first in a series of changes trying to align clang -cc1
flags for Split DWARF with those of llc. The unfortunate side effect of
having -split-dwarf-output for single file Split DWARF will disappear
again in a subsequent change.
The change is the result of a discussion in D59673.
Reviewers: dblaikie, echristo
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D63130
llvm-svn: 363494
This patch allows clang users to print out a list of supported CPU models using
clang [--target=<target triple>] --print-supported-cpus
Then, users can select the CPU model to compile to using
clang --target=<triple> -mcpu=<model> a.c
It is a handy feature to help cross compilation.
llvm-svn: 363464
Summary:
We're using the clang static analyzer together with a number of
custom analyses in our CI system to ensure that certain invariants
are statiesfied for by the code every commit. Unfortunately, there
currently doesn't seem to be a good way to determine whether any
analyzer warnings were emitted, other than parsing clang's output
(or using scan-build, which then in turn parses clang's output).
As a simpler mechanism, simply add a `-analyzer-werror` flag to CC1
that causes the analyzer to emit its warnings as errors instead.
I briefly tried to have this be `Werror=analyzer` and make it go
through that machinery instead, but that seemed more trouble than
it was worth in terms of conflicting with options to the actual build
and special cases that would be required to circumvent the analyzers
usual attempts to quiet non-analyzer warnings. This is simple and it
works well.
Reviewed-By: NoQ, Szelethusw
Differential Revision: https://reviews.llvm.org/D62885
llvm-svn: 362855
Part 2 (the Clang portion) of D59881.
This patch (first of two patches) enables the vectorizer to recognize the
IBM MASS vector library routines. This patch specifically adds support for
recognizing the -vector-library=MASSV option, and defines mappings from IEEE
standard scalar math functions to generic PowerPC MASS vector counterparts.
For instance, the generic PowerPC MASS vector entry for double-precision
cbrt function is __cbrtd2_massv.
The second patch will further lower the generic PowerPC vector entries to
PowerPC subtarget-specific entries.
For instance, the PowerPC generic entry cbrtd2_massv is lowered to
cbrtd2_P9 for Power9 subtarget.
The overall support for MASS vector library is presented as such in two patches
for ease of review.
Patch by Jeeva Paudel.
Differential revision: https://reviews.llvm.org/D59881
llvm-svn: 362571
that might affect the dependency list for a compilation
This commit introduces a dependency directives source minimizer to clang
that minimizes header and source files to the minimum necessary preprocessor
directives for evaluating includes. It reduces the source down to #define, #include,
The source minimizer works by lexing the input with a custom fast lexer that recognizes
the preprocessor directives it cares about, and emitting those directives in the minimized source.
It ignores source code, comments, and normalizes whitespace. It gives up and fails if seems
any directives that it doesn't recognize as valid (e.g. #define 0).
In addition to the source minimizer this patch adds a
-print-dependency-directives-minimized-source CC1 option that allows you to invoke the minimizer
from clang directly.
Differential Revision: https://reviews.llvm.org/D55463
llvm-svn: 362459
This patch adds a `-fdeclare-opencl-builtins` command line option to
the clang frontend. This enables clang to verify OpenCL C builtin
function declarations using a fast StringMatcher lookup, instead of
including the opencl-c.h file with the `-finclude-default-header`
option. This avoids the large parse time penalty of the header file.
This commit only adds the basic infrastructure and some of the OpenCL
builtins. It does not cover all builtins defined by the various OpenCL
specifications. As such, it is not a replacement for
`-finclude-default-header` yet.
RFC: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060041.html
Co-authored-by: Pierre Gondois
Co-authored-by: Joey Gouly
Co-authored-by: Sven van Haastregt
Differential Revision: https://reviews.llvm.org/D60763
llvm-svn: 362371
Same patch as D62093, but for checker/plugin options, the only
difference being that options for alpha checkers are implicitly marked
as alpha.
Differential Revision: https://reviews.llvm.org/D62093
llvm-svn: 361566
These options are now only visible under
-analyzer-checker-option-help-developer.
Differential Revision: https://reviews.llvm.org/D61839
llvm-svn: 361561
Previously, the only way to display the list of available checkers was
to invoke the analyzer with -analyzer-checker-help frontend flag. This
however wasn't really great from a maintainer standpoint: users came
across checkers meant strictly for development purposes that weren't to
be tinkered with, or those that were still in development. This patch
creates a clearer division in between these categories.
From now on, we'll have 3 flags to display the list checkers. These
lists are mutually exclusive and can be used in any combination (for
example to display both stable and alpha checkers).
-analyzer-checker-help: Displays the list for stable, production ready
checkers.
-analyzer-checker-help-alpha: Displays the list for in development
checkers. Enabling is discouraged
for non-development purposes.
-analyzer-checker-help-developer: Modeling and debug checkers. Modeling
checkers shouldn't be enabled/disabled
by hand, and debug checkers shouldn't
be touched by users.
Differential Revision: https://reviews.llvm.org/D62093
llvm-svn: 361558
Add the new frontend flag -analyzer-checker-option-help to display all
checker/package options.
Differential Revision: https://reviews.llvm.org/D57858
llvm-svn: 361552
Defines macro ARM_FEATURE_CMSE to 1 for v8-M targets and introduces
-mcmse option which for v8-M targets sets ARM_FEATURE_CMSE to 3.
A diagnostic is produced when the option is given on architectures
without support for Security Extensions.
Reviewed By: dmgreen, snidertm
Differential Revision: https://reviews.llvm.org/D59879
llvm-svn: 361261
This affects users of older (pre 2.26) binutils in such a way that they can't necessarily
work around it as it doesn't support the compress option on the command line. Reverting
to unblock them and we can revisit whether to make this change now or fix how we want
to express the option.
This reverts commit bdb21337e6e1732c9895966449c33c408336d295/r360403.
llvm-svn: 360703
This adds the -ast-dump=json cc1 flag (in addition to -ast-dump=default, which is the default if no dump format is specified), as well as some initial AST dumping functionality and tests.
llvm-svn: 360622
Since July 15, 2015 (binutils-gdb commit
19a7fe52ae3d0971e67a134bcb1648899e21ae1c, included in 2.26), gas
--compress-debug-sections=zlib (gcc -gz) means zlib-gabi:
SHF_COMPRESSED. Before that it meant zlib-gnu (.zdebug).
clang's -gz was introduced in rC306115 (Jun 2017) to indicate zlib-gnu. It
is 2019 now and it is not unreasonable to assume users of the new
feature to have new linkers (ld.bfd/gold >= 2.26, lld >= rLLD273661).
Change clang's default accordingly to improve standard conformance.
zlib-gnu becomes out of fashion and gets poorer toolchain support.
Its mangled names confuse tools and are more likely to cause problems.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D61689
llvm-svn: 360403
During my work on analyzer dependencies, I created a great amount of new
checkers that emitted no diagnostics at all, and were purely modeling some
function or another.
However, the user shouldn't really disable/enable these by hand, hence this
patch, which hides these by default. I intentionally chose not to hide alpha
checkers, because they have a scary enough name, in my opinion, to cause no
surprise when they emit false positives or cause crashes.
The patch introduces the Hidden bit into the TableGen files (you may remember
it before I removed it in D53995), and checkers that are either marked as
hidden, or are in a package that is marked hidden won't be displayed under
-analyzer-checker-help. -analyzer-checker-help-hidden, a new flag meant for
developers only, displays the full list.
Differential Revision: https://reviews.llvm.org/D60925
llvm-svn: 359720
TL;DR:
* Add checker and package options to the TableGen files
* Added a new class called CmdLineOption, and both Package and Checker recieved
a list<CmdLineOption> field.
* Added every existing checker and package option to Checkers.td.
* The CheckerRegistry class
* Received some comments to most of it's inline classes
* Received the CmdLineOption and PackageInfo inline classes, a list of
CmdLineOption was added to CheckerInfo and PackageInfo
* Added addCheckerOption and addPackageOption
* Added a new field called Packages, used in addPackageOptions, filled up in
addPackage
Detailed description:
In the last couple months, a lot of effort was put into tightening the
analyzer's command line interface. The main issue is that it's spectacularly
easy to mess up a lenghty enough invocation of the analyzer, and the user was
given no warnings or errors at all in that case.
We can divide the effort of resolving this into several chapters:
* Non-checker analyzer configurations:
Gather every analyzer configuration into a dedicated file. Emit errors for
non-existent configurations or incorrect values. Be able to list these
configurations. Tighten AnalyzerOptions interface to disallow making such
a mistake in the future.
* Fix the "Checker Naming Bug" by reimplementing checker dependencies:
When cplusplus.InnerPointer was enabled, it implicitly registered
unix.Malloc, which implicitly registered some sort of a modeling checker
from the CStringChecker family. This resulted in all of these checker
objects recieving the name "cplusplus.InnerPointer", making AnalyzerOptions
asking for the wrong checker options from the command line:
cplusplus.InnerPointer:Optimisic
istead of
unix.Malloc:Optimistic.
This was resolved by making CheckerRegistry responsible for checker
dependency handling, instead of checkers themselves.
* Checker options: (this patch included!)
Same as the first item, but for checkers.
(+ minor fixes here and there, and everything else that is yet to come)
There were several issues regarding checker options, that non-checker
configurations didn't suffer from: checker plugins are loaded runtime, and they
could add new checkers and new options, meaning that unlike for non-checker
configurations, we can't collect every checker option purely by generating code.
Also, as seen from the "Checker Naming Bug" issue raised above, they are very
rarely used in practice, and all sorts of skeletons fell out of the closet while
working on this project.
They were extremely problematic for users as well, purely because of how long
they were. Consider the following monster of a checker option:
alpha.cplusplus.UninitializedObject:CheckPointeeInitialization=false
While we were able to verify whether the checker itself (the part before the
colon) existed, any errors past that point were unreported, easily resulting
in 7+ hours of analyses going to waste.
This patch, similarly to how dependencies were reimplemented, uses TableGen to
register checker options into Checkers.td, so that Checkers.inc now contains
entries for both checker and package options. Using the preprocessor,
Checkers.inc is converted into code in CheckerRegistry, adding every builtin
(checkers and packages that have an entry in the Checkers.td file) checker and
package option to the registry. The new addPackageOption and addCheckerOption
functions expose the same functionality to statically-linked non-builtin and
plugin checkers and packages as well.
Emitting errors for incorrect user input, being able to list these options, and
some other functionalies will land in later patches.
Differential Revision: https://reviews.llvm.org/D57855
llvm-svn: 358752
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
Part 1 of CSPGO change in Clang. This includes changes in clang options
and calls to llvm PassManager. Tests will be committed in part2.
This change needs the PassManager change in llvm.
Differential Revision: https://reviews.llvm.org/D54176
llvm-svn: 355331
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
This is a recommit of r354873 but with a fix for unqualified lookup error in lldb cmake build bot.
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 355190
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 354873
A faster way to reduce the values in teams reductions was found, the
codegen is updated to use this faster algorithm and new runtime functions.
llvm-svn: 354479
This adds ACLE-defined macros to test for code being compiled in the ROPI and
RWPI position-independence modes.
Differential revision: https://reviews.llvm.org/D23610
llvm-svn: 354265
Fixed diagnostic emission for the exceptions support in case of the
compilation of OpenMP code for the devices. From now on, it uses delayed
diagnostics mechanism, previously used for CUDA only. It allow to
diagnose not allowed used of exceptions only in functions that are going
to be codegen'ed.
llvm-svn: 353542
It is important to delay the emission of the diagnostic messages for the
functions unless it is proved that the function is going to be used on
the device side. It is required to support compilation with some of the
target-specific system headers.
llvm-svn: 353540
Summary:
This adds support for new-PM plugin loading to clang. The option
`-fpass-plugin=` may be used to specify a dynamic shared object file
that adheres to the PassPlugin API.
Tested: created simple plugin that registers an EP callback; with optimization level > 0, the pass is run as expected.
Committed on behalf of Marco Elver
Differential Revision: https://reviews.llvm.org/D56935
llvm-svn: 352972
- fixes the test on macOS with LLVM_ENABLE_PIC=OFF
- together with D57343, gets the test to pass on Windows
- makes it run everywhere (it seems to just pass on Linux)
The main change is to pull out the resource directory computation into a
function shared by all 3 places that do it. In CIndexer.cpp, this now works no
matter if libclang is in lib/ or bin/ or statically linked to a binary in bin/.
Differential Revision: https://reviews.llvm.org/D57345
llvm-svn: 352803
Introduce an option to request global visibility settings be applied to
declarations without a definition or an explicit visibility, rather than
the existing behavior of giving these default visibility. When the
visibility of all or most extern definitions are known this allows for
the same optimisations -fvisibility permits without updating source code
to annotate all declarations.
Differential Revision: https://reviews.llvm.org/D56868
llvm-svn: 352391
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Adds a new -f[no]split-lto-unit flag that is disabled by default to
control module splitting during ThinLTO. It is automatically enabled
for -fsanitize=cfi and -fwhole-program-vtables.
The new EnableSplitLTOUnit codegen flag is passed down to llvm
via a new module flag of the same name.
Depends on D53890.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D53891
llvm-svn: 350949
Summary: Introduce a compiler flag for cases when the user knows that the collapsed loop counter can be safely represented using at most 32 bits. This will prevent the emission of expensive mathematical operations (such as the div operation) on the iteration variable using 64 bits where 32 bit operations are sufficient.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: hfinkel, kkwli0, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D55928
llvm-svn: 350758
Moves the code added in r350340 around a bit, to hopefully make the existing
plugin tests pass when clang is built with examples enabled.
llvm-svn: 350451
The problem is similar to D55986 but for threads: a process with the
interceptor hwasan library loaded might have some threads started by
instrumented libraries and some by uninstrumented libraries, and we
need to be able to run instrumented code on the latter.
The solution is to perform per-thread initialization lazily. If a
function needs to access shadow memory or add itself to the per-thread
ring buffer its prologue checks to see whether the value in the
sanitizer TLS slot is null, and if so it calls __hwasan_thread_enter
and reloads from the TLS slot. The runtime does the same thing if it
needs to access this data structure.
This change means that the code generator needs to know whether we
are targeting the interceptor runtime, since we don't want to pay
the cost of lazy initialization when targeting a platform with native
hwasan support. A flag -fsanitize-hwaddress-abi={interceptor,platform}
has been introduced for selecting the runtime ABI to target. The
default ABI is set to interceptor since it's assumed that it will
be more common that users will be compiling application code than
platform code.
Because we can no longer assume that the TLS slot is initialized,
the pthread_create interceptor is no longer necessary, so it has
been removed.
Ideally, lazy initialization should only cost one instruction in the
hot path, but at present the call may cause us to spill arguments
to the stack, which means more instructions in the hot path (or
theoretically in the cold path if the spills are moved with shrink
wrapping). With an appropriately chosen calling convention for
the per-thread initialization function (TODO) the hot path should
always need just one instruction and the cold path should need two
instructions with no spilling required.
Differential Revision: https://reviews.llvm.org/D56038
llvm-svn: 350429
-plugin already prints an error if the name of an unknown plugin is passed.
-add-plugin used to silently ignore that, now it errors too.
Differential Revision: https://reviews.llvm.org/D56273
llvm-svn: 350340
Summary:
Add an option to initialize automatic variables with either a pattern or with
zeroes. The default is still that automatic variables are uninitialized. Also
add attributes to request uninitialized on a per-variable basis, mainly to disable
initialization of large stack arrays when deemed too expensive.
This isn't meant to change the semantics of C and C++. Rather, it's meant to be
a last-resort when programmers inadvertently have some undefined behavior in
their code. This patch aims to make undefined behavior hurt less, which
security-minded people will be very happy about. Notably, this means that
there's no inadvertent information leak when:
- The compiler re-uses stack slots, and a value is used uninitialized.
- The compiler re-uses a register, and a value is used uninitialized.
- Stack structs / arrays / unions with padding are copied.
This patch only addresses stack and register information leaks. There's many
more infoleaks that we could address, and much more undefined behavior that
could be tamed. Let's keep this patch focused, and I'm happy to address related
issues elsewhere.
To keep the patch simple, only some `undef` is removed for now, see
`replaceUndef`. The padding-related infoleaks are therefore not all gone yet.
This will be addressed in a follow-up, mainly because addressing padding-related
leaks should be a stand-alone option which is implied by variable
initialization.
There are three options when it comes to automatic variable initialization:
0. Uninitialized
This is C and C++'s default. It's not changing. Depending on code
generation, a programmer who runs into undefined behavior by using an
uninialized automatic variable may observe any previous value (including
program secrets), or any value which the compiler saw fit to materialize on
the stack or in a register (this could be to synthesize an immediate, to
refer to code or data locations, to generate cookies, etc).
1. Pattern initialization
This is the recommended initialization approach. Pattern initialization's
goal is to initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognizable in
a crash dump, without being values which programmers can rely on for useful
program semantics. At the same time, pattern initialization tries to
generate code which will optimize well. You'll find the following details in
`patternFor`:
- Integers are initialized with repeated 0xAA bytes (infinite scream).
- Vectors of integers are also initialized with infinite scream.
- Pointers are initialized with infinite scream on 64-bit platforms because
it's an unmappable pointer value on architectures I'm aware of. Pointers
are initialize to 0x000000AA (small scream) on 32-bit platforms because
32-bit platforms don't consistently offer unmappable pages. When they do
it's usually the zero page. As people try this out, I expect that we'll
want to allow different platforms to customize this, let's do so later.
- Vectors of pointers are initialized the same way pointers are.
- Floating point values and vectors are initialized with a negative quiet
NaN with repeated 0xFF payload (e.g. 0xffffffff and 0xffffffffffffffff).
NaNs are nice (here, anways) because they propagate on arithmetic, making
it more likely that entire computations become NaN when a single
uninitialized value sneaks in.
- Arrays are initialized to their homogeneous elements' initialization
value, repeated. Stack-based Variable-Length Arrays (VLAs) are
runtime-initialized to the allocated size (no effort is made for negative
size, but zero-sized VLAs are untouched even if technically undefined).
- Structs are initialized to their heterogeneous element's initialization
values. Zero-size structs are initialized as 0xAA since they're allocated
a single byte.
- Unions are initialized using the initialization for the largest member of
the union.
Expect the values used for pattern initialization to change over time, as we
refine heuristics (both for performance and security). The goal is truly to
avoid injecting semantics into undefined behavior, and we should be
comfortable changing these values when there's a worthwhile point in doing
so.
Why so much infinite scream? Repeated byte patterns tend to be easy to
synthesize on most architectures, and otherwise memset is usually very
efficient. For values which aren't entirely repeated byte patterns, LLVM
will often generate code which does memset + a few stores.
2. Zero initialization
Zero initialize all values. This has the unfortunate side-effect of
providing semantics to otherwise undefined behavior, programs therefore
might start to rely on this behavior, and that's sad. However, some
programmers believe that pattern initialization is too expensive for them,
and data might show that they're right. The only way to make these
programmers wrong is to offer zero-initialization as an option, figure out
where they are right, and optimize the compiler into submission. Until the
compiler provides acceptable performance for all security-minded code, zero
initialization is a useful (if blunt) tool.
I've been asked for a fourth initialization option: user-provided byte value.
This might be useful, and can easily be added later.
Why is an out-of band initialization mecanism desired? We could instead use
-Wuninitialized! Indeed we could, but then we're forcing the programmer to
provide semantics for something which doesn't actually have any (it's
uninitialized!). It's then unclear whether `int derp = 0;` lends meaning to `0`,
or whether it's just there to shut that warning up. It's also way easier to use
a compiler flag than it is to manually and intelligently initialize all values
in a program.
Why not just rely on static analysis? Because it cannot reason about all dynamic
code paths effectively, and it has false positives. It's a great tool, could get
even better, but it's simply incapable of catching all uses of uninitialized
values.
Why not just rely on memory sanitizer? Because it's not universally available,
has a 3x performance cost, and shouldn't be deployed in production. Again, it's
a great tool, it'll find the dynamic uses of uninitialized variables that your
test coverage hits, but it won't find the ones that you encounter in production.
What's the performance like? Not too bad! Previous publications [0] have cited
2.7 to 4.5% averages. We've commmitted a few patches over the last few months to
address specific regressions, both in code size and performance. In all cases,
the optimizations are generally useful, but variable initialization benefits
from them a lot more than regular code does. We've got a handful of other
optimizations in mind, but the code is in good enough shape and has found enough
latent issues that it's a good time to get the change reviewed, checked in, and
have others kick the tires. We'll continue reducing overheads as we try this out
on diverse codebases.
Is it a good idea? Security-minded folks think so, and apparently so does the
Microsoft Visual Studio team [1] who say "Between 2017 and mid 2018, this
feature would have killed 49 MSRC cases that involved uninitialized struct data
leaking across a trust boundary. It would have also mitigated a number of bugs
involving uninitialized struct data being used directly.". They seem to use pure
zero initialization, and claim to have taken the overheads down to within noise.
Don't just trust Microsoft though, here's another relevant person asking for
this [2]. It's been proposed for GCC [3] and LLVM [4] before.
What are the caveats? A few!
- Variables declared in unreachable code, and used later, aren't initialized.
This goto, Duff's device, other objectionable uses of switch. This should
instead be a hard-error in any serious codebase.
- Volatile stack variables are still weird. That's pre-existing, it's really
the language's fault and this patch keeps it weird. We should deprecate
volatile [5].
- As noted above, padding isn't fully handled yet.
I don't think these caveats make the patch untenable because they can be
addressed separately.
Should this be on by default? Maybe, in some circumstances. It's a conversation
we can have when we've tried it out sufficiently, and we're confident that we've
eliminated enough of the overheads that most codebases would want to opt-in.
Let's keep our precious undefined behavior until that point in time.
How do I use it:
1. On the command-line:
-ftrivial-auto-var-init=uninitialized (the default)
-ftrivial-auto-var-init=pattern
-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
2. Using an attribute:
int dont_initialize_me __attribute((uninitialized));
[0]: https://users.elis.ugent.be/~jsartor/researchDocs/OOPSLA2011Zero-submit.pdf
[1]: https://twitter.com/JosephBialek/status/1062774315098112001
[2]: https://outflux.net/slides/2018/lss/danger.pdf
[3]: https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
[4]: 776a0955ef
[5]: http://wg21.link/p1152
I've also posted an RFC to cfe-dev: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060172.html
<rdar://problem/39131435>
Reviewers: pcc, kcc, rsmith
Subscribers: JDevlieghere, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54604
llvm-svn: 349442
pass in the -target-sdk-version to the compiler and backend
This commit adds support for reading the SDKSettings.json file in the Darwin
driver. This file is used by the driver to determine the SDK's version, and it
uses that information to pass it down to the compiler using the new
-target-sdk-version= option. This option is then used to set the appropriate
SDK Version module metadata introduced in r349119.
Note: I had to adjust the two ast tests as the SDKROOT environment variable
on macOS caused SDK version to be picked up for the compilation of source file
but not the AST.
rdar://45774000
Differential Revision: https://reviews.llvm.org/D55673
llvm-svn: 349380
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
It is faster to directly call the ObjC runtime for methods such as alloc/allocWithZone instead of sending a message to those functions.
This patch adds support for converting messages to alloc/allocWithZone to their equivalent runtime calls.
Tests included for the positive case of applying this transformation, negative tests that we ensure we only convert "alloc" to objc_alloc, not "alloc2", and also a driver test to ensure we enable this only for supported runtime versions.
Reviewed By: rjmccall
https://reviews.llvm.org/D55349
llvm-svn: 348687
When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
When the global new and delete operators aren't declared, Clang
provides and implicit declaration, but this declaration currently
always uses the default visibility. This is a problem when the
C++ library itself is being built with non-default visibility because
the implicit declaration will force the new and delete operators to
have the default visibility unlike the rest of the library.
The existing workaround is to use assembly to enforce the visiblity:
https://fuchsia.googlesource.com/zircon/+/master/system/ulib/zxcpp/new.cpp#108
but that solution is not always available, e.g. in the case of of
libFuzzer which is using an internal version of libc++ that's also built
with -fvisibility=hidden where the existing behavior is causing issues.
This change introduces a new option -fvisibility-global-new-delete-hidden
which makes the implicit declaration of the global new and delete
operators hidden.
Differential Revision: https://reviews.llvm.org/D53787
llvm-svn: 348234
In earlier patches regarding AnalyzerOptions, a lot of effort went into
gathering all config options, and changing the interface so that potential
misuse can be eliminited.
Up until this point, AnalyzerOptions only evaluated an option when it was
querried. For example, if we had a "-no-false-positives" flag, AnalyzerOptions
would store an Optional field for it that would be None up until somewhere in
the code until the flag's getter function is called.
However, now that we're confident that we've gathered all configs, we can
evaluate off of them before analysis, so we can emit a error on invalid input
even if that prticular flag will not matter in that particular run of the
analyzer. Another very big benefit of this is that debug.ConfigDumper will now
show the value of all configs every single time.
Also, almost all options related class have a similar interface, so uniformity
is also a benefit.
The implementation for errors on invalid input will be commited shorty.
Differential Revision: https://reviews.llvm.org/D53692
llvm-svn: 348031
This patch passes -fdebug-prefix-map (a feature for renaming source
paths in the debug info) through to the per-module codegen options and
adds the debug prefix map to the module hash.
<rdar://problem/46045865>
Differential Revision: https://reviews.llvm.org/D55037
llvm-svn: 347926
Summary:
the previous patch (https://reviews.llvm.org/rC346642) has been reverted because of test failure under windows.
So this patch fix the test cfe/trunk/test/CodeGen/code-coverage-filter.c.
Reviewers: marco-c
Reviewed By: marco-c
Subscribers: cfe-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D54600
llvm-svn: 347144
Summary:
Experience has shown that the functionality is useful. It makes linking
optimized clang with debug info for me a lot faster, 20s to 13s. The
type merging phase of PDB writing goes from 10s to 3s.
This removes the LLVM cl::opt and replaces it with a metadata flag.
After this change, users can do the following to use ghash:
- add -gcodeview-ghash to compiler flags
- replace /DEBUG with /DEBUG:GHASH in linker flags
Reviewers: zturner, hans, thakis, takuto.ikuta
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54370
llvm-svn: 347072
This unfortunately results in a substantial breaking change when
switching to C++20, but it's not yet clear what / how much we should
do about that. We may want to add a compatibility conversion from
u8 string literals to const char*, similar to how C++98 provided a
compatibility conversion from string literals to non-const char*,
but that's not handled by this patch.
The feature can be disabled in C++20 mode with -fno-char8_t.
llvm-svn: 346892
The DWARF5 specification says(Appendix F.1):
"The sections that do not require relocation, however, can be
written to the relocatable object (.o) file but ignored by the
linker or they can be written to a separate DWARF object (.dwo)
file that need not be accessed by the linker."
The first part describes a single file split DWARF feature and there
is no way to trigger this behavior atm.
Fortunately, no many changes are required to keep *.dwo sections
in a .o, the patch does that.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346837
Summary:
This saves a lot of relocations in optimized object files (at the cost
of some cost/increase in linked executable bytes), but gold's 32 bit
gdb-index support has a bug (
https://sourceware.org/bugzilla/show_bug.cgi?id=21894 ) so we can't
switch to this unconditionally. (& even if it weren't for that bug, one
might argue that some users would want to optimize in one direction or
the other - prioritizing object size or linked executable size)
Differential Revision: https://reviews.llvm.org/D54243
llvm-svn: 346789
Summary:
These options are taking regex separated by colons to filter files.
- if both are empty then all files are instrumented
- if -fprofile-filter-files is empty then all the filenames matching any of the regex from exclude are not instrumented
- if -fprofile-exclude-files is empty then all the filenames matching any of the regex from filter are instrumented
- if both aren't empty then all the filenames which match any of the regex in filter and which don't match all the regex in filter are instrumented
- this patch is a follow-up of https://reviews.llvm.org/D52033
Reviewers: marco-c, vsk
Reviewed By: marco-c, vsk
Subscribers: cfe-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D52034
llvm-svn: 346642
Summary:
This CL adds /Zc:DllexportInlines flag to clang-cl.
When Zc:DllexportInlines- is specified, inline class member function is not exported if the function does not have local static variables.
By not exporting inline function, code for those functions are not generated and that reduces both compile time and obj size. Also this flag does not import inline functions from dllimported class if the function does not have local static variables.
On my 24C48T windows10 machine, build performance of chrome target in chromium repository is like below.
These stats are come with 'target_cpu="x86" enable_nacl = false is_component_build=true dcheck_always_on=true` build config and applied
* https://chromium-review.googlesource.com/c/chromium/src/+/1212379
* https://chromium-review.googlesource.com/c/v8/v8/+/1186017
Below stats were taken with this patch applied on a05115cd4c
| config | build time | speedup | build dir size |
| with patch, PCH on, debug | 1h10m0s | x1.13 | 35.6GB |
| without patch, PCH on, debug | 1h19m17s | | 49.0GB |
| with patch, PCH off, debug | 1h15m45s | x1.16 | 33.7GB |
| without patch, PCH off, debug | 1h28m10s | | 52.3GB |
| with patch, PCH on, release | 1h13m13s | x1.22 | 26.2GB |
| without patch, PCH on, release | 1h29m57s | | 37.5GB |
| with patch, PCH off, release | 1h23m38s | x1.32 | 23.7GB |
| without patch, PCH off, release | 1h50m50s | | 38.7GB |
This patch reduced obj size and the number of exported symbols largely, that improved link time too.
e.g. link time stats of blink_core.dll become like below
| | cold disk cache | warm disk cache |
| with patch, PCH on, debug | 71s | 30s |
| without patch, PCH on, debug | 111s | 48s |
This patch's implementation is based on Nico Weber's patch. I modified to support static local variable, added tests and took stats.
Bug: https://bugs.llvm.org/show_bug.cgi?id=33628
Reviewers: hans, thakis, rnk, javed.absar
Reviewed By: hans
Subscribers: kristof.beyls, smeenai, dschuff, probinson, cfe-commits, eraman
Differential Revision: https://reviews.llvm.org/D51340
llvm-svn: 346069
Handle it in the driver and propagate it to cc1
Reviewers: rjmccall, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D52615
llvm-svn: 346001
target/teams/distribute regions.
Target/teams/distribute regions exist for all the time the kernel is
executed. Thus, if the variable is declared in their context and then
escape it, we can allocate global memory statically instead of
allocating it dynamically.
Patch captures all the globalized variables in target/teams/distribute
contexts, merges them into the records, one per each target region.
Those records are then joined into the union, one per compilation unit
(to save the global memory). Those units are organized into
2 x dimensional arrays, where the first dimension is
the number of blocks per SM and the second one is the number of SMs.
Runtime functions manage this global memory space between the executing
teams.
llvm-svn: 345978
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
Default property value 'true' preserves current behavior. Value 'false' can be
used to create VFS "root", file system that gives better control over which
files compiler can use during compilation as there are no unpredictable
accesses to real file system.
Non-fallthrough use case changes how we treat multiple VFS overlay
files. Instead of all of them being at the same level just above a real
file system, now they are nested and subsequent overlays can refer to
files in previous overlays.
Change is done both in LLVM and Clang, corresponding LLVM commit is r345431.
rdar://problem/39465552
Reviewers: bruno, benlangmuir
Reviewed By: bruno
Subscribers: dexonsmith, cfe-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D50539
llvm-svn: 345432
Summary:
- Add `UETT_PreferredAlignOf` to account for the difference between `__alignof` and `alignof`
- `AlignOfType` now returns ABI alignment instead of preferred alignment iff clang-abi-compat > 7, and one uses _Alignof or alignof
Patch by Nicole Mazzuca!
Differential Revision: https://reviews.llvm.org/D53207
llvm-svn: 345419
Add a new driver level flag `-fcf-runtime-abi=` that allows one to specify the
runtime ABI for CoreFoundation. This controls the language interoperability.
In particular, this is relevant for generating the CFConstantString classes
(primarily through the `__builtin___CFStringMakeConstantString` builtin) which
construct a reference to the "CFObject"'s `isa` field. This type differs
between swift 4.1 and 4.2+.
Valid values for the new option include:
- objc [default behaviour] - enable ObjectiveC interoperability
- swift-4.1 - enable interoperability with swift 4.1
- swift-4.2 - enable interoperability with swift 4.2
- swift-5.0 - enable interoperability with swift 5.0
- swift [alias] - target the latest swift ABI
Furthermore, swift 4.2+ changed the layout for the CFString when building
CoreFoundation *without* ObjectiveC interoperability. In such a case, a field
was added to the CFObject base type changing it from: <{ const int*, int }> to
<{ uintptr_t, uintptr_t, uint64_t }>.
In swift 5.0, the CFString type will be further adjusted to change the length
from a uint32_t on everything but BE LP64 targets to uint64_t.
Note that the default behaviour for clang remains unchanged and the new layout
must be explicitly opted into via `-fcf-runtime-abi=swift*`.
llvm-svn: 345222
This patch exposes functionality added in rL344723 to the Clang driver/frontend
as a flag and adds appropriate metadata.
Driver tests pass:
```
ninja check-clang-driver
-snip-
Expected Passes : 472
Expected Failures : 3
Unsupported Tests : 65
```
Odd failure in CodeGen tests but unrelated to this:
```
ninja check-clang-codegen
-snip-
/SourceCache/llvm-trunk-8.0/tools/clang/test/CodeGen/builtins-wasm.c:87:10:
error: cannot compile this builtin function yet
-snip-
Failing Tests (1):
Clang :: CodeGen/builtins-wasm.c
Expected Passes : 1250
Expected Failures : 2
Unsupported Tests : 120
Unexpected Failures: 1
```
Original commit:
[X86] Support for the mno-tls-direct-seg-refs flag
Allows to disable direct TLS segment access (%fs or %gs). GCC supports a
similar flag, it can be useful in some circumstances, e.g. when a thread
context block needs to be updated directly from user space. More info and
specific use cases: https://bugs.llvm.org/show_bug.cgi?id=16145
Patch by nruslan (Ruslan Nikolaev).
Differential Revision: https://reviews.llvm.org/D53102
llvm-svn: 344739
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
llvm-svn: 344199
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
Summary:
gcc defines macros such as __code_model_small_ based on the user passed command line flag -mcmodel. clang accepts a flag with the same name and similar effects, but does not generate any macro that the user can use. This cl narrows the gap between gcc and clang behaviour.
However, achieving full compatibility with gcc is not trivial: The set of valid values for mcmodel in gcc and clang are not equal. Also, gcc defines different macros for different architectures. In this cl, we only tackle an easy part of the problem and define the macro only for x64 architecture. When the user does not specify a mcmodel, the macro for small code model is produced, as is the case with gcc.
Reviewers: compnerd, MaskRay
Reviewed By: MaskRay
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D52920
llvm-svn: 344000
Summary: Its job is covered by -ast-dump. The option is rarely used and lacks many AST nodes which will lead to llvm_unreachable() crash.
Reviewers: rsmith, arphaman
Reviewed By: rsmith
Subscribers: jfb, cfe-commits
Differential Revision: https://reviews.llvm.org/D52529
llvm-svn: 343660
This patch renames -f{no-}cuda-rdc to -f{no-}gpu-rdc and keeps the original
options as aliases. When -fgpu-rdc is off,
clang will assume the device code in each translation unit does not call
external functions except those in the device library, therefore it is possible
to compile the device code in each translation unit to self-contained kernels
and embed them in the host object, so that the host object behaves like
usual host object which can be linked by lld.
The benefits of this feature is: 1. allow users to create static libraries which
can be linked by host linker; 2. amortized device code linking time.
This patch modifies HIP action builder to insert actions for linking device
code and generating HIP fatbin, and pass HIP fatbin to host backend action.
It extracts code for constructing command for generating HIP fatbin as
a function so that it can be reused by early finalization. It also modifies
codegen of HIP host constructor functions to embed the device fatbin
when it is available.
Differential Revision: https://reviews.llvm.org/D52377
llvm-svn: 343611
There are a few leftovers of rC343147 that are not (\w+)\.begin but in
the form of ([-[:alnum:]>.]+)\.begin or spanning two lines. Change them
to use the container form in this commit. The 12 occurrences have been
inspected manually for safety.
llvm-svn: 343425
Dumping graphs instead of opening them is often very useful,
e.g. for transfer or converting to SVG.
Basic sanity check for generated exploded graphs.
Differential Revision: https://reviews.llvm.org/D52637
llvm-svn: 343352
With clang-cl, when the user specifies /Yc or /Yu without a filename
the compiler uses a #pragma hdrstop in the main source file to
determine the end of the PCH. If a header is specified with /Yc or
/Yu #pragma hdrstop has no effect.
The optional #pragma hdrstop filename argument is not yet supported.
Differential Revision: https://reviews.llvm.org/D51391
llvm-svn: 341963
Boilerplate code for using KMSAN instrumentation in Clang.
We add a new command line flag, -fsanitize=kernel-memory, with a
corresponding SanitizerKind::KernelMemory, which, along with
SanitizerKind::Memory, maps to the memory_sanitizer feature.
KMSAN is only supported on x86_64 Linux.
It's incompatible with other sanitizers, but supports code coverage
instrumentation.
llvm-svn: 341641
Ubigraph project has been dead since about 2008, and to the best of my
knowledge, no one was using it.
Previously, I wasn't able to launch the existing binary at all.
Differential Revision: https://reviews.llvm.org/D51655
llvm-svn: 341601
Load Hardening.
Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.
Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.
While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.
This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.
Differential Revision: https://reviews.llvm.org/D51157
llvm-svn: 341363
Summary:
Added option -gline-directives-only to support emission of the debug directives
only. It behaves very similar to -gline-tables-only, except that it sets
llvm debug info emission kind to
llvm::DICompileUnit::DebugDirectivesOnly.
Reviewers: echristo
Subscribers: aprantl, fedor.sergeev, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D51177
llvm-svn: 341212
constants by default when there is no optimization.
GCC's option -fno-keep-static-consts can be used to not emit
unused static constants.
In Clang, since default behavior does not keep unused static constants,
-fkeep-static-consts can be used to emit these if required. This could be
useful for producing identification strings like SVN identifiers
inside the object file even though the string isn't used by the program.
Differential Revision: https://reviews.llvm.org/D40925
llvm-svn: 340439
This commit adds the flag -fno-c++-static-destructors and the attributes
[[clang::no_destroy]] and [[clang::always_destroy]]. no_destroy specifies that a
specific static or thread duration variable shouldn't have it's destructor
registered, and is the default in -fno-c++-static-destructors mode.
always_destroy is the opposite, and is the default in -fc++-static-destructors
mode.
A variable whose destructor is disabled (either because of
-fno-c++-static-destructors or [[clang::no_destroy]]) doesn't count as a use of
the destructor, so we don't do any access checking or mark it referenced. We
also don't emit -Wexit-time-destructors for these variables.
rdar://21734598
Differential revision: https://reviews.llvm.org/D50994
llvm-svn: 340306
This changes the current default behavior (from emitting pubnames by
default, to not emitting them by default) & moves to matching GCC's
behavior* with one significant difference: -gno(-gnu)-pubnames disables
pubnames even in the presence of -gsplit-dwarf (though -gsplit-dwarf
still by default enables -ggnu-pubnames). This allows users to disable
pubnames (& the new DWARF5 accelerated access tables) when they might
not be worth the size overhead.
* GCC's behavior is that -ggnu-pubnames and -gpubnames override each
other, and that -gno-gnu-pubnames and -gno-pubnames act as synonyms and
disable either kind of pubnames if they come last. (eg: -gpubnames
-gno-gnu-pubnames causes no pubnames (neither gnu or standard) to be
emitted)
llvm-svn: 340206
- Add a command line options -msign-return-address to enable return address
signing
- Armv8.3a added instructions to sign the return address to help mitigate
against ROP attacks
- This patch adds command line options to generate function attributes that
signal to the back whether return address signing instructions should be
added
Differential revision: https://reviews.llvm.org/D49793
llvm-svn: 340019
LLVM triple normalization is handling "unknown" and empty components
differently; for example given "x86_64-unknown-linux-gnu" and
"x86_64-linux-gnu" which should be equivalent, triple normalization
returns "x86_64-unknown-linux-gnu" and "x86_64--linux-gnu". autoconf's
config.sub returns "x86_64-unknown-linux-gnu" for both
"x86_64-linux-gnu" and "x86_64-unknown-linux-gnu". This changes the
triple normalization to behave the same way, replacing empty triple
components with "unknown".
This addresses PR37129.
Differential Revision: https://reviews.llvm.org/D50219
llvm-svn: 339294
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in as the function attribute
"null-pointer-is-valid"="true".
This CL only adds the attribute on the function.
It also strips "nonnull" attributes from function arguments but
keeps the related warnings unchanged.
Corresponding LLVM change rL336613 already updated the
optimizations to not treat null pointer dereferencing
as undefined if the attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: jyknight
Subscribers: drinkcat, xbolva00, cfe-commits
Differential Revision: https://reviews.llvm.org/D47894
llvm-svn: 337433
which was reverted in r337336.
The problem that required a revert was fixed in r337338.
Also added a missing "REQUIRES: x86-registered-target" to one of
the tests.
Original commit message:
> Teach Clang to emit address-significance tables.
>
> By default, we emit an address-significance table on all ELF
> targets when the integrated assembler is enabled. The emission of an
> address-significance table can be controlled with the -faddrsig and
> -fno-addrsig flags.
>
> Differential Revision: https://reviews.llvm.org/D48155
llvm-svn: 337339
Causing multiple failures on sanitizer bots due to TLS symbol errors,
e.g.
/usr/bin/ld: __msan_origin_tls: TLS definition in /home/buildbots/ppc64be-clang-test/clang-ppc64be/stage1/lib/clang/7.0.0/lib/linux/libclang_rt.msan-powerpc64.a(msan.cc.o) section .tbss.__msan_origin_tls mismatches non-TLS reference in /tmp/lit_tmp_0a71tA/mallinfo-3ca75e.o
llvm-svn: 337336
By default, we emit an address-significance table on all ELF
targets when the integrated assembler is enabled. The emission of an
address-significance table can be controlled with the -faddrsig and
-fno-addrsig flags.
Differential Revision: https://reviews.llvm.org/D48155
llvm-svn: 337333
Summary: Add a flag `-fno-digraphs` to disable digraphs in the lexer, similar to `-fno-operator-names` which disables alternative names for C++ operators.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: rsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D48266
llvm-svn: 337232
Implement support for MS-style PCH through headers.
This enables support for /Yc and /Yu where the through header is either
on the command line or included in the source. It replaces the current
support the requires the header also be specified with /FI.
This change adds a -cc1 option -pch-through-header that is used to either
start or stop compilation during PCH create or use.
When creating a PCH, the compilation ends after compilation of the through
header.
When using a PCH, tokens are skipped until after the through header is seen.
Patch By: mikerice
Differential Revision: https://reviews.llvm.org/D46652
llvm-svn: 336379
- Rename the `-fsame-fbits` flag to `-fpadding-on-unsigned-fixed-point`
- Move the flag from a driver option to a cc1 option
- Rename the `SameFBits` member in TargetInfo to `PaddingOnUnsignedFixedPoint`
- Updated descriptions
Differential Revision: https://reviews.llvm.org/D48727
llvm-svn: 335993
With MSVC, PCH files are created along with an object file that needs to
be linked into the final library or executable. That object file
contains the code generated when building the headers. In particular, it
will include definitions of inline dllexport functions, and because they
are emitted in this object file, other files using the PCH do not need
to emit them. See the bug for an example.
This patch makes clang-cl match MSVC's behaviour in this regard, causing
significant compile-time savings when building dlls using precompiled
headers.
For example, in a 64-bit optimized shared library build of Chromium with
PCH, it reduces the binary size and compile time of
stroke_opacity_custom.obj from 9315564 bytes to 3659629 bytes and 14.6
to 6.63 s. The wall-clock time of building blink_core.dll goes from
38m41s to 22m33s. ("user" time goes from 1979m to 1142m).
Differential Revision: https://reviews.llvm.org/D48426
llvm-svn: 335466
Since we are now producing a summary also for regular LTO builds, we
need to run the NameAnonGlobals pass in those cases as well (the
summary cannot handle anonymous globals).
See https://reviews.llvm.org/D34156 for details on the original change.
This reverts commit 6c9ee4a4a438a8059aacc809b2dd57128fccd6b3.
llvm-svn: 335385
This is breaking a couple of buildbots. We need to run the
NameAnonGlobal pass for regular LTO now as well (since we're producing a
summary). I'll post a separate patch for review to make this happen and
then re-commit.
This reverts commit c0759b7b1f4a81ff9021b952aa38a222d5fa4dfd.
llvm-svn: 335291
Summary:
With D33921, we gained the ability to have module summaries in regular
LTO modules without triggering ThinLTO compilation. Module summaries in
regular LTO allow garbage collection (dead stripping) before LTO
compilation and thus open up additional optimization opportunities.
This patch enables summary emission in regular LTO for all targets
except ld64-based ones (which use the legacy LTO API).
Reviewers: pcc, tejohnson, mehdi_amini
Subscribers: inglorion, eraman, cfe-commits
Differential Revision: https://reviews.llvm.org/D34156
llvm-svn: 335284
This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
Summary:
In many cases we can't devirtualize
because definition of vtable is not present. Most of the
time it is caused by inline virtual function not beeing
emitted. Forcing emitting of vtable adds a reference of these
inline virtual functions.
Note that GCC was always doing it.
Reviewers: rjmccall, rsmith, amharc, kuhar
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D47108
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 334600
Summary:
This kind of functionality is useful to other project apart from clang.
LLDB works with version numbers a lot, but it does not have a convenient
abstraction for this. Moving this class to a lower level library allows
it to be freely used within LLDB.
Since this class is used in a lot of places in clang, and it used to be
in the clang namespace, it seemed appropriate to add it to the list of
adopted classes in LLVM.h to avoid prefixing all uses with "llvm::".
Also, I didn't find any tests specific for this class, so I wrote a
couple of quick ones for the more interesting bits of functionality.
Reviewers: zturner, erik.pilkington
Subscribers: mgorny, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47887
llvm-svn: 334399
The windows-msvc target is used for MSVC ABI compatibility, including
the exceptions model. It doesn't make sense to pair a windows-msvc
target with a non-MSVC exception model. This would previously cause an
assertion failure; explicitly error out for it in the frontend instead.
This also allows us to reduce the matrix of target/exception models a
bit (see the modified tests), and we can possibly simplify some of the
personality code in a follow-up.
Differential Revision: https://reviews.llvm.org/D47853
llvm-svn: 334243
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333923
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333814
Add the ability to dump compiler option-related information to a JSON file via the -compiler-options-dump option. Specifically, it dumps the features/extensions lists -- however, this output could be extended to other information should it be useful. In order to support features and extensions, I moved them into a .def file so that we could build the various lists we care about from them without a significant increase in maintenance burden.
llvm-svn: 333653
Codebases that need to be compatible with the Microsoft ABI can pass
this flag to avoid issues caused by the lack of a fixed ABI for
incomplete member pointers.
Differential Revision: https://reviews.llvm.org/D47503
llvm-svn: 333498
The return value of sys::getDefaultTargetTriple, which is derived from
-DLLVM_DEFAULT_TRIPLE, is used to construct tool names, default target,
and in the future also to control the search path directly; as such it
should be used textually, without interpretation by LLVM.
Normalization of this value may lead to unexpected results, for example
if we configure LLVM with -DLLVM_DEFAULT_TARGET_TRIPLE=x86_64-linux-gnu,
normalization will transform that value to x86_64--linux-gnu. Driver will
use that value to search for tools prefixed with x86_64--linux-gnu- which
may be confusing. This is also inconsistent with the behavior of the
--target flag which is taken as-is without any normalization and overrides
the value of LLVM_DEFAULT_TARGET_TRIPLE.
Users of sys::getDefaultTargetTriple already perform their own
normalization as needed, so this change shouldn't impact existing logic.
Differential Revision: https://reviews.llvm.org/D47153
llvm-svn: 333307
Currently getting such completions requires source correction, reparsing
and calling completion again. And if it shows no results and rollback is
required then it costs one more reparse.
With this change it's possible to get all results which can be later
filtered to split changes which require correction.
Differential Revision: https://reviews.llvm.org/D41537
llvm-svn: 333272
if `-fopenmp-simd` is specified alone, `_OPENMP` macro should not be
defined. If `-fopenmp-simd` is specified along with the `-fopenmp`,
`_OPENMP` macro should be defined with the value `201511`.
llvm-svn: 332852
The return value of sys::getDefaultTargetTriple, which is derived from
-DLLVM_DEFAULT_TRIPLE, is used to construct tool names, default target,
and in the future also to control the search path directly; as such it
should be used textually, without interpretation by LLVM.
Normalization of this value may lead to unexpected results, for example
if we configure LLVM with -DLLVM_DEFAULT_TARGET_TRIPLE=x86_64-linux-gnu,
normalization will transform that value to x86_64--linux-gnu. Driver will
use that value to search for tools prefixed with x86_64--linux-gnu- which
may be confusing. This is also inconsistent with the behavior of the
--target flag which is taken as-is without any normalization and overrides
the value of LLVM_DEFAULT_TARGET_TRIPLE.
Users of sys::getDefaultTargetTriple already perform their own
normalization as needed, so this change shouldn't impact existing logic.
Differential Revision: https://reviews.llvm.org/D46910
llvm-svn: 332750
in gcc by https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html.
The -mibt feature flag is being removed, and the -fcf-protection
option now also defines a CET macro and causes errors when used
on non-X86 targets, while X86 targets no longer check for -mibt
and -mshstk to determine if -fcf-protection is supported. -mshstk
is now used only to determine availability of shadow stack intrinsics.
Comes with an LLVM patch (D46882).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46881
llvm-svn: 332704
The PS4 requires clang ABI version 6 for compatibility reasons. This change forces this and if the user specifies a different version when the PS4 target is specified, the compiler emits a warning that the specified version is being ignored.
Reviewers: probinson
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D46767
llvm-svn: 332160
The option enables use of 32-bit pointers for accessing
const/local/shared memory. The feature is disabled by default.
Differential Revision: https://reviews.llvm.org/D46148
llvm-svn: 331938
Restrict the following keywords in the OpenCL C++ language mode,
according to Sections 2.2 & 2.9 of the OpenCL C++ 1.0 Specification.
- dynamic_cast
- typeid
- register (already restricted in OpenCL C, update the diagnostic)
- thread_local
- exceptions (try/catch/throw)
- access qualifiers read_only, write_only, read_write
Support the `__global`, `__local`, `__constant`, `__private`, and
`__generic` keywords in OpenCL C++. Leave the unprefixed address
space qualifiers such as global available, i.e., do not mark them as
reserved keywords in OpenCL C++. libclcxx provides explicit address
space pointer classes such as `global_ptr` and `global<T>` that are
implemented using the `__`-prefixed qualifiers.
Differential Revision: https://reviews.llvm.org/D46022
llvm-svn: 331874
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
Generate a printable OpenCL language version number in a single place
and select between the OpenCL C or OpenCL C++ version accordingly.
Differential Revision: https://reviews.llvm.org/D46382
llvm-svn: 331766
Summary:
Passes down the necessary code ge options to the LTO Config to enable
-fdiagnostics-show-hotness and -fsave-optimization-record in the ThinLTO
backend for a distributed build.
Also, remove warning about not having PGO when the input is IR.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, cfe-commits
Differential Revision: https://reviews.llvm.org/D46464
llvm-svn: 331592
This replicates 'cl.exe' behavior and allows for both preprocessor output and
dependency information to be extraced with a single compiler invocation.
This is especially useful for compiler caching with tools like Mozilla's sccache.
See: https://github.com/mozilla/sccache/issues/246
Patch By: fxb
Differential Revision: https://reviews.llvm.org/D46394
llvm-svn: 331533
enabled for the host.
If the compilation for the host enables C++ exceptions, but they are not
supported by the device, we still need to allow the code with the
exception handling constructs outside of the target regions.
llvm-svn: 331372
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
llvm-svn: 331244
As suggested in the post-commit thread for rL331056, we should match these
clang options with the established vocabulary of the corresponding sanitizer
option. Also, the use of 'strict' is well-known for these kinds of knobs,
and we can improve the descriptive text in the docs.
So this intends to match the logic of D46135 but only change the words.
Matching LLVM commit to match this spelling of the attribute to follow shortly.
Differential Revision: https://reviews.llvm.org/D46236
llvm-svn: 331209
As discussed in the post-commit thread for:
rL330437 ( http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180423/545906.html )
We need a way to opt-out of a float-to-int-to-float cast optimization because too much
existing code relies on the platform-specific undefined result of those casts when the
float-to-int overflows.
The LLVM changes associated with adding this function attribute are here:
rL330947
rL330950
rL330951
Also as suggested, I changed the LLVM doc to mention the specific sanitizer flag that
catches this problem:
rL330958
Differential Revision: https://reviews.llvm.org/D46135
llvm-svn: 331041
HIP is a language similar to CUDA (https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md ).
The language syntax is very similar, which allows a hip program to be compiled as a CUDA program by Clang. The main difference
is the host API. HIP has a set of vendor neutral host API which can be implemented on different platforms. Currently there is open source
implementation of HIP runtime on amdgpu target (https://github.com/ROCm-Developer-Tools/HIP).
This patch adds support of input kind and language standard hip.
When hip file is compiled, both LangOpts.CUDA and LangOpts.HIP is turned on. This allows compilation of hip program as CUDA
in most cases and only special handling of hip program is needed LangOpts.HIP is checked.
This patch also adds support of kernel launching of HIP program using HIP host API.
When -x hip is not specified, there is no behaviour change for CUDA.
Patch by Greg Rodgers.
Revised and lit test added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D44984
llvm-svn: 330790
Summary:
By default Clang outputs its version (including git commit hash, in
case of trunk builds) into object and assembly files. It might be
useful to have an option to disable this, especially for debugging
purposes.
This patch implements new command line flags -Qn and -Qy (the names
are chosen for compatibility with GCC). -Qn disables output of
the 'llvm.ident' metadata string and the 'producer' debug info. -Qy
(enabled by default) does the opposite.
Reviewers: faisalv, echristo, aprantl
Reviewed By: aprantl
Subscribers: aprantl, cfe-commits, JDevlieghere, rogfer01
Differential Revision: https://reviews.llvm.org/D45255
llvm-svn: 330442
This implements support for the previously ignored flag
`-falign-functions`. This allows the frontend to request alignment on
function definitions in the translation unit where they are not
explicitly requested in code. This is compatible with the GCC behaviour
and the ICC behaviour.
The scalar value passed to `-falign-functions` aligns functions to a
power-of-two boundary. If flag is used, the functions are aligned to
16-byte boundaries. If the scalar is specified, it must be an integer
less than or equal to 4096. If the value is not a power-of-two, the
driver will round it up to the nearest power of two.
llvm-svn: 330378