Previously, ELFReader takes three template arguments: EFLT,
LinkingContextT and FileT. FileT is itself templated.
So it was a bit complicated. Maybe too much.
Most architectures don't actually need to be parameterized for ELFT.
For example, x86 is always ELF32LE and x86-64 is ELF64LE.
However, because ELFReader requires a ELFT argument, we needed
to parameterize a class even if not needed.
This patch removes the parameter from the class. So now we can
de-templatize such classes (I didn't do that in this patch, though).
This patch also removes ContextT parameter since it didn't have to be
passed as a template argument.
llvm-svn: 234853
There is one-to-one correspondence between ELF machine type and a
LinkingContext. We passed them as separate arguments to the constructor.
This patch is to teach the LinkingContexts about their machine types,
so that we don't need to pass that data as separate arguments.
llvm-svn: 233894
registerRelocationNames() function is called to register all known
ELF relocation types to the central registry. Since we have separate
LinkingContext class for each ELF machine type, we need to call the
function for each LinkingContext.
However, the function belonged to TargetHandler instead of LinkingContext.
So we needed to do ctx.getTargetHandler().registerRelocationNames().
This patch removes that redundant getTargetHandler call by moving the
function from TargetHandler to LinkingContext.
Conceptually this patch is small, but in reality it's not that small.
It's because the same code is copied to each architecture.
Most of this patch is just repetition. We need to merge them, but
that cannot be done in this patch.
llvm-svn: 233883
Multiple inheritance is casually used here. Rewriting to not
using multiple inheritance reduces the complexity of the code
and also makes it shorter.
llvm-svn: 233718
lldELF is used by each ELF backend. lldELF's ELFLinkingContext
also held a reference to each backend, creating a link-time
cycle. This patch moves the backend references to lldDriver.
Differential Revision: http://reviews.llvm.org/D7119
llvm-svn: 226976
The LLD linker searches initializer and finalizer function names
and emits DT_INIT/DT_FINI dynamic table tags to point to these symbols.
The -init/-fini command line options override initializer ("_init") and
finalizer ("_fini") function names used by default.
Now the -init/-fini options do not affect .init_array/.fini_array
sections. The corresponding code has been removed.
Differential Revision: http://reviews.llvm.org/D6578
llvm-svn: 223917
ELFLinkingContext had these two functions, which is really not needed since
the Writer uses a llvm::object template composed of Endianness, Alignment,
Is32bit/64bit. We could just use that and not duplicate functionality.
No Change In Functionality.
llvm-svn: 221523
This would permit the ELF reader to check the architecture that is being
selected by the linking process.
This patch also sorts the include files according to LLVM conventions.
llvm-svn: 220129
The main changes are in:
include/lld/Core/Reference.h
include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.
1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers. It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.
The new model is that there is a global Registry object. You programmatically
register the Readers you want with the registry object. Whenever you need to
read/parse a file, you ask the registry to do it, and the registry tries each
registered reader.
For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object.
2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings. Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values. The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value. This tuple system allows conversion to and from strings with
no ambiguities.
llvm-svn: 197727
Enable this for the following flavors
a) core
b) gnu
c) darwin
Its disabled for the flavor PECOFF. Convenient markers are added with FIXME
comments in the Driver that would be removed and code removed from each flavor.
llvm-svn: 193585
Changes :-
a) Functionality in InputGraph to insert Input elements at any position
b) Functionality in the Resolver to use nextFile
c) Move the functionality of assigning file ordinals to InputGraph
d) Changes all inputs to MemoryBuffers
e) Remove LinkerInput, InputFiles, ReaderArchive
llvm-svn: 192081
Also change some local variable names: "ti" -> "context" and
"_targetInfo" -> "_context".
Differential Revision: http://llvm-reviews.chandlerc.com/D1301
llvm-svn: 187823