to handle the case of an integer constant (DWARF 3 and later).
- Fixes tests that assert in RecordLayoutBuilder::updateExternalFieldOffset
because LLDB was providing an external AST source with missing member offsets.
llvm-svn: 187423
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
Show variables that were in the debug info but optimized out. Also display a good error message when one of these variables get used in an expression.
llvm-svn: 182066
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
Fixed LLDB to be able to correctly parse template parameters that have no name and no type. This can be triggered by the following LLVM/Clang code:
template <typename T, typename = void>
class SmallVectorTemplateCommon : public SmallVectorBase {
The “typename = void” was emitting DWARF with an empty DW_AT_name and no DW_AT_type. We now correctly infer that no DW_AT_type means “void” and that an empty name is ok.
This means you can now call functions on things that inherit from SmallVectorTemplateCommon.
llvm-svn: 180155
if we didn't want to put in a CXXConstructorDecl. This
prevents malformed classes (i.e., classes with regular C
functions as members) from being generated from type
information (and fixes a crash in the test suite).
<rdar://problem/13550765>
llvm-svn: 179136
Now we can:
1 - see the return value for functions that return types that use the "ext_vector_size"
2 - dump values that use the vector attributes ("expr $ymm0")
3 - modified the DWARF parser to correctly parse GNU vector types from the DWARF by turning them into clang::Type::ExtVector types instead of just standard arrays
llvm-svn: 178924
Symbol table function names should support lookups like symbols with debug info.
To fix this I:
- Gutted the way FindFunctions is used, there used to be way too much smarts only in the DWARF plug-in
- Made it more efficient by chopping the name up once and using simpler queries so that SymbolFile and Symtab plug-ins don't need to do as much
- Filter the results at a higher level
- Make the lldb_private::Symtab able to chop up C++ mangled names and make as much sense out of them as possible and also be able to search by basename, fullname, method name, and selector name.
llvm-svn: 178608
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
Make dynamic type detection faster by using the AST metadata to help out and allow us not to complete types when we don't need to.
After running "purge" on a MacOSX system, the Xcode variables view now populates more than 3x faster with this fix.
llvm-svn: 176676
Also added C++11 enum test cases to cover enums as int8_t, int16_t int32_t, int64_t, uint8_t, uint16_t, uint32_t, and uint64_t both for DWARF and dSYM cases. The DWARF being emitted by clang is missing the enum integer type, but the code is now ready to accept and deal with the integral type if it is supplied.
llvm-svn: 176548
LLDB wasn't printing the names for negative enums. Fixed the signed extraction of enumerators and how they were registered with clang's type system.
llvm-svn: 176533
DWARF with .o files now uses 40-60% less memory!
Big fixes include:
- Change line table internal representation to contain "file addresses". Since each line table is owned by a compile unit that is owned by a module, it makes address translation into lldb_private::Address easy to do when needed.
- Removed linked address members/methods from lldb_private::Section and lldb_private::Address
- lldb_private::LineTable can now relink itself using a FileRangeMap to make it easier to re-link line tables in the future
- Added ObjectFile::ClearSymtab() so that we can get rid of the object file symbol tables after we parse them once since they are not needed and kept memory allocated for no reason
- Moved the m_sections_ap (std::auto_ptr to section list) and m_symtab_ap (std::auto_ptr to the lldb_private::Symtab) out of each of the ObjectFile subclasses and put it into lldb_private::ObjectFile.
- Changed how the debug map is parsed and stored to be able to:
- Lazily parse the debug map for each object file
- not require the address map for a .o file until debug information is linked for a .o file
llvm-svn: 176454
Fixed an issue with clang 500's new way to represent static class variables where it emits a DW_TAG_member with a DW_AT_external(0x01) attribute and no DW_AT_data_member_location.
llvm-svn: 176140
SymbolFileDWARF code:
- If a class is being uniqued to another copy of itself
and the method lists don't match exactly, take a slow
path and at least unique the methods that they have
in common.
- Sort name_to_die maps before querying them. This
would otherwise result in uniquing failures because
looking up a name in a map that contains it would
often fail.
- Tolerate classes in other symbol files in the case
of debugging with .o files rather than with a
.dSYM. We used to assume that the classes being
uniqued were in the same symbol file, causing
unpredictable results.
This will dramatically reduce the number of cases where
a function does not have a valid DeclContext.
<rdar://problem/12153915>
llvm-svn: 176067
StackFrame assumes m_sc is additive, but m_sc can lose its target. So now the SymbolContext::Clear() method takes a bool that indicates if the target should be cleared. Modified all existing code to properly set the bool argument.
llvm-svn: 175953
if it encountered bad debug information. This
debug information had an Objective-C method whose
selector disagreed with the true number of arguments
to that method.
<rdar://problem/12992864>
llvm-svn: 174557
Cleaned up the objective C name parsing code to use a class.
Now breakpoints that are set by name that are objective C methods without the leading '+' or '-' will resolve. We do this by expanding all the objective C names for a given string. For example:
(lldb) b [MyString cStringUsingEncoding:]
Will set a breakpoint with multiple possible names:
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Also if you have a category, it will strip the category and set a breakpoint in all variants:
(lldb) [MyString(my_category) cStringUsingEncoding:]
Will resolve to the following names:
-[MyString(my_category) cStringUsingEncoding:]
+[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Likewise when we have:
(lldb) b -[MyString(my_category) cStringUsingEncoding:]
It will resolve to two names:
-[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
llvm-svn: 173858
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
to report a structure with an array of size 1
at the end without accounting for that array
when reporting the struct's total size to Clang.
LLDB now coerces such an array to size 0.
<rdar://problem/12822204>
llvm-svn: 170168
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- Removed the BitfieldMap class because it is unnecessary.
We now just track the most recently added field.
- Moved the code that calculates bitfield widths so it
can also be used to determine whether it's necessary
to insert anonymous fields.
- Simplified the anonymous field calculation code into
three cases (two of which are resolved identically).
- Beefed up the bitfield testcase.
llvm-svn: 169449
Fixed an issue where lldb was setting breakpoints on too many methods when a partial function name with namespaces or class qualifiers was used. For example setting a breakpoint of "Foo::dealloc" was accidentally settings breakpoints on all objective C functions whose selector was "dealloc"...
llvm-svn: 168053
When uniquing classes against one another we can't depend on any or all of the artificial functions (default ctor, dtor, copy ctor, move ctor, etc) being in each definition. Now we treat those separately and handle those to the best of our ability.
llvm-svn: 167752
<rdar://problem/12153915> (partial fix)
Remove an assert and place an error message instead so we don't crash when we run into a type tag that we don't recognize. We will now emit a warning so that hopefully we can get a bug report that has example code that shows what we are missing.
Also fixed a case when trying to unique one type to another where we would confuse concrete instances of methods with their definitions and end up not correctly registering the types.
llvm-svn: 167557
Unnamed bitfields cause struct layout problems
Synthesize unnamed bitfields when required. Most compilers don't mention unnamed bitfields in the DWARF, so we need to create them to keep clang happy with the types we create from the DWARF. We currently can't do this for ObjC since the DW_AT_bit_offset value for any direct ivars of ObjC classes as the values for these attributes are bogus. A bug has been filed on Clang to fix this, and another bug has been filed on LLDB to make sure we fix the DWARF parser once the clang fix is in by looking the the DW_AT_producer in the compile unit attributes and finding the compiler version and only enabling it for newer versions of clang.
llvm-svn: 167424
LLDB now provides base class offsets (virtual and non virtual) to Clang's record layout. We previously were told this wasn't necessary, but it is when pragma pack gets involved.
llvm-svn: 167262
so it could hold this information, and then used it to look up unfound names in the object pointer
if it exists. This gets "frame var" to work for unqualified references to ivars captured in blocks.
But the expression parser is ignoring this information still.
llvm-svn: 166860
1 by the expression parser. We now correctly
report that they are of size 0. (C++ structs
are mandated to have nonzero size, and Clang marks
them as being 1 byte in size.)
<rdar://problem/12380800>
llvm-svn: 166256
top-of-tree. Removed all local patches and llvm.zip.
The intent is that fron now on top-of-tree will
always build against LLVM/Clang top-of-tree, and
that problems building will be resolved as they
occur. Stable release branches of LLDB can be
constructed as needed and linked to specific release
branches of LLVM/Clang.
llvm-svn: 164563
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Fixed an issue that could cause references the shared data for an object file to stay around longer than intended and could cause memory bloat when debugging multiple times.
llvm-svn: 161716
that automatically generated setters/getters only
get added to a class after explicitly declared (or
synthesized) getters/setters had the chance to be
added. This eliminates conflicts creating errors
of the form:
error: instance method '...' has incompatible result
types in different translation units ('X *' vs. 'id')
llvm-svn: 157956
Fixed an issue with the current type being set to DIE_IS_BEING_PARSED in the m_die_to_type map by making sure the type pointer is valid.
llvm-svn: 157836
(actually, mainly just hooked up support that was already
there). Added a test case, although it's expected to fail
right now unless you're using top-of-tree LLVM.
llvm-svn: 157220
ObjCPlusPlus as Objective-C classes. Really the
compiler should say they have Objective-C runtime
class, but we should be a little more resilient
(we were refusing to find ivars in those classes
before).
Also added a test case.
llvm-svn: 155515
Fixed an issue that would happen when using debug map with DWARF in the .o files where we wouldn't ever track down the actual definition for a type when things were in namespaces. We now serialize the decl context information into an intermediate format which allows us to track down the correct definition for a type regardless of which DWARF symbol file it comes from. We do this by creating a "DWARFDeclContext" object that contains the DW_TAG + name for each item in a decl context which we can then use to veto potential accelerator table matches. For example, the accelerator tables store the basename of the type, so if you have "std::vector<int>", we would end up with an accelerator table entry for the type that contained "vector<int>", which we would then search for using a DWARFDeclContext object that contained:
[0] DW_TAG_class_type "vector<int>"
[1] DW_TAG_namespace "std"
This is currently used to track down forward declarations for things like "class a:🅱️:Foo;".
llvm-svn: 155488
class AnalysisResolver;
And we will look for it everywhere and find many many matches, but the decl context of those matching DIEs is "clang::AnalysisResolver", so we never match anything, yet we pull in waaayyy too much DWARF in the process.
To enable this logging enable the "lookups" category in the "dwarf" log channel:
(lldb) log enable dwarf lookups
llvm-svn: 155233
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
FunctionDecls into classes if it looked up a
method in a different DWARF context than the
one where it found the parent class's definition.
The symptom of this was, for a method A::B(),
1) LLDB finds A in context 1, creating a
CXXRecordDecl for A and marking it as needing
completion
2) LLDB looks up B in context 2, finds that its
parent A already has a CXXRecordDecl, but can't
find a CXXMethodDecl for B
3) Not finding a CXXMethodDecl for B, LLDB doesn't
set the flag indicating that B was resolved
4) Because the flag wasn't set, LLDB's fallthrough
code creates a FunctionDecl for B and sticks it
in the DeclContext -- in this case, A.
5) Clang crashes on finding a FunctionDecl inside a
CXXRecordDecl.
llvm-svn: 154627
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067