The function 'getTargetShuffleMask' already knows how to deal with PSHUFB nodes
where the mask node is a load from constant pool, and the constant pool node
is wrapped by a X86ISD::Wrapper node. This patch extends that logic by teaching
it how to also look through X86ISD::WrapperRIP.
This helps function combineX86ShufflesRecusively to combine more shuffle
sequences containing PSHUFB nodes if we are in RIPRel PIC mode.
Before this change, llc (with -relocation-model=pic -march=x86-64) was unable
to decode a pshufb where the mask was loaded from a constant pool. For example,
the no-op shuffle from test 'x86-fold-pshufb.ll' was not folded into its
operand, so instead of generating a single 'movaps' the backend always
generated a sub-optimal 'movdqa + pshufb' sequence.
Added test x86-fold-pshufb.ll.
llvm-svn: 236863
Summary:
In microMIPS, labels need to know whether they are on code or data. This is
indicated with STO_MIPS_MICROMIPS and can be inferred by being followed
by instructions. For empty basic blocks, we can ensure this by emitting the
.insn directive after the label.
Also, this fixes some failures in our out-of-tree microMIPS buildbots, for the
exception handling regression tests under: SingleSource/Regression/C++/EH
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9530
llvm-svn: 236815
We were accidentally folding a sign/zero extend in to address arithmetic in a different BB when the extend wasn't available there.
Cross BB fast-isel isn't safe, so restrict this to only when the extend is in the same BB as the use.
llvm-svn: 236764
This patch corresponds to review:
http://reviews.llvm.org/D9440
It adds a new register class to the PPC back end to contain single precision
values in VSX registers. Additionally, it adds scalar loads and stores for
VSX registers.
llvm-svn: 236755
This is a follow-on to r236740 where I took Andrea's advice
in D9504 to remove a redundant pattern...except that I removed
the wrong pattern!
AFAICT, there is no change in the final code produced because
subsequent passes would clean up the extra instructions created
by the more complicated pattern.
llvm-svn: 236743
Finish the job that was abandoned in D6958 following the refactoring in
http://reviews.llvm.org/rL230221:
1. Uncomment the intrinsic def for the AVX r_Int instruction.
2. Add missing r_Int entries to the load folding tables; there are already
tests that check these in "test/Codegen/X86/fold-load-unops.ll", so I
haven't added any more in this patch.
3. Add patterns to solve PR21507 ( https://llvm.org/bugs/show_bug.cgi?id=21507 ).
So instead of this:
movaps %xmm0, %xmm1
rcpss %xmm1, %xmm1
movss %xmm1, %xmm0
We should now get:
rcpss %xmm0, %xmm0
And instead of this:
vsqrtss %xmm0, %xmm0, %xmm1
vblendps $1, %xmm1, %xmm0, %xmm0 ## xmm0 = xmm1[0],xmm0[1,2,3]
We should now get:
vsqrtss %xmm0, %xmm0, %xmm0
Differential Revision: http://reviews.llvm.org/D9504
llvm-svn: 236740
http://reviews.llvm.org/D9517
The separate header file allows to reuse the MIPS ABI flags structure
constants in other LLVM tools like the llvm-readobj.
No functional changes.
llvm-svn: 236732
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.
By Igor Breger (igor.breger@intel.com)
llvm-svn: 236714
Summary: This will enable the IAS to reject floating point instructions if soft-float is enabled.
Reviewers: dsanders, echristo
Reviewed By: dsanders
Subscribers: jfb, llvm-commits, mpf
Differential Revision: http://reviews.llvm.org/D9053
llvm-svn: 236713
When folding a load in to another instruction, we need to fix the class of the index register
Otherwise, it could be something like GR64 not GR64_NOSP and would fail the machine verifier.
llvm-svn: 236644
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
llvm-svn: 236613
With neon enabled, we reach SelectBinaryFPOp and are able to get registers for a <2 x double> add.
However, we shouldn't actually attempt arithmetic on it as ARMIselLowering says "v2f64 is legal so that QR subregs can be extracted as f64 elements, but neither Neon nor VFP support any arithmetic operations on it."
This commit disables SelectBinaryFPOp for any vector types. There's already a FIXME to try handle neon. Doing so would require fixing this conditional which isn't safe for vectors 'VT == MVT::f64 || VT == MVT::i64'
llvm-svn: 236609
The initial code drop for VSX swap optimization permitted the
optimization only when all operations in a web of related computation
are lane-insensitive. For some lane-sensitive operations, we can
still permit the optimization provided that we make adjustments to
those operations. This patch adds special handling for vector splats
so that their presence doesn't kill the optimization.
Vector splats are lane-sensitive since they identify by number a
vector element to be used as the source of a splat. When swap
optimizations take place, the desired vector element will move to the
opposite doubleword of the quadword vector. We thus replace the index
I by (I + N/2) % N, where N is the number of elements in the vector.
A new test case is added to test that swap optimization succeeds when
vector splats are present, and that the proper input element is used
as the source of the splat.
An ancillary change removes SH_BUILDVEC as one of the kinds of special
handling that may be required by VSX swap optimization. From
experience with GCC, I had expected to need some modifications for
vector build operations, but I did not find that to be the case.
llvm-svn: 236606
Since r234249, i1 are sext instead of zext; because of that, doing
"CMP rN, #0; IT EQ/NE" isn't correct anymore.
"TST #1" is the conservatively correct alternative - the tradeoff being
that it doesn't have a 16-bit encoding -, so use that instead.
llvm-svn: 236569
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
There are 2 structural changes here:
1. The main diff is that we're preparing to extend the optimization
flags to affect more than just binary SDNodes. Eg, IR intrinsics
( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes
that don't even exist in IR such as FMA, FNEG, etc.
2. The other change is that we're actually copying the FP fast-math-flags
from the IR instructions to SDNodes.
Differential Revision: http://reviews.llvm.org/D8900
llvm-svn: 236546
The register set for LDMIA begins at offset 3, not 4. We were previously
missing the short encoding of this instruction in the case where the base
register was the first register in the register set.
Also clean up some dead code:
- The isARMLowRegister check is redundant with what VerifyLowRegs does;
replace with an assert.
- Remove handling of LDMDB instruction, which has no short encoding (and
does not appear in ReduceTable).
Differential Revision: http://reviews.llvm.org/D9485
llvm-svn: 236535
This adds intrinsics to allow access to all of the z13 vector instructions.
Note that instructions whose semantics can be described by standard LLVM IR
do not get any intrinsics.
For each instructions whose semantics *cannot* (fully) be described, we
define an LLVM IR target-specific intrinsic that directly maps to this
instruction.
For instructions that also set the condition code, the LLVM IR intrinsic
returns the post-instruction CC value as a second result. Instruction
selection will attempt to detect code that compares that CC value against
constants and use the condition code directly instead.
Based on a patch by Richard Sandiford.
llvm-svn: 236527
The ABI specifies that <1 x i128> and <1 x fp128> are supposed to be
passed in vector registers. We do not yet support those types, and
some infrastructure is missing before we can do so.
In order to prevent accidentally generating code violating the ABI,
this patch adds checks to detect those types and error out if user
code attempts to use them.
llvm-svn: 236526
The ABI allows sub-128 vectors to be passed and returned in registers,
with the vector occupying the upper part of a register. We therefore
want to legalize those types by widening the vector rather than promoting
the elements.
The patch includes some simple tests for sub-128 vectors and also tests
that we can recognize various pack sequences, some of which use sub-128
vectors as temporary results. One of these forms is based on the pack
sequences generated by llvmpipe when no intrinsics are used.
Signed unpacks are recognized as BUILD_VECTORs whose elements are
individually sign-extended. Unsigned unpacks can have the equivalent
form with zero extension, but they also occur as shuffles in which some
elements are zero.
Based on a patch by Richard Sandiford.
llvm-svn: 236525
The z13 vector facility includes some instructions that operate only on the
high f64 in a v2f64, effectively extending the FP register set from 16
to 32 registers. It's still better to use the old instructions if the
operands happen to fit though, since the older instructions have a shorter
encoding.
Based on a patch by Richard Sandiford.
llvm-svn: 236524
The architecture doesn't really have any native v4f32 operations except
v4f32->v2f64 and v2f64->v4f32 conversions, with only half of the v4f32
elements being used. Even so, using vector registers for <4 x float>
and scalarising individual operations is much better than generating
completely scalar code, since there's much less register pressure.
It's also more efficient to do v4f32 comparisons by extending to 2
v2f64s, comparing those, then packing the result.
This particularly helps with llvmpipe.
Based on a patch by Richard Sandiford.
llvm-svn: 236523
This adds ABI and CodeGen support for the v2f64 type, which is natively
supported by z13 instructions.
Based on a patch by Richard Sandiford.
llvm-svn: 236522
This the first of a series of patches to add CodeGen support exploiting
the instructions of the z13 vector facility. This patch adds support
for the native integer vector types (v16i8, v8i16, v4i32, v2i64).
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level
(implemented in clang), but also at the LLVM IR level. This is done
by selecting a different DataLayout string depending on whether the
vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236521
This patch adds support for the z13 processor type and its vector facility,
and adds MC support for all new instructions provided by that facilily.
Apart from defining the new instructions, the main changes are:
- Adding VR128, VR64 and VR32 register classes.
- Making FP64 a subclass of VR64 and FP32 a subclass of VR32.
- Adding a D(V,B) addressing mode for scatter/gather operations
- Adding 1-, 2-, and 3-bit immediate operands for some 4-bit fields.
Until now all immediate operands have been the same width as the
underlying field (hence the assert->return change in decode[SU]ImmOperand).
In addition, sys::getHostCPUName is extended to detect running natively
on a z13 machine.
Based on a patch by Richard Sandiford.
llvm-svn: 236520
This reverts commit r236360.
This change exposed a bug in WinEHPrepare by opting win32 code into EH
preparation. We already knew that WinEHPrepare has bugs, and is the
status quo for x64, so I don't think that's a reason to hold off on this
change. I disabled exceptions in the sanitizer tests in r236505 and an
earlier revision.
llvm-svn: 236508
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
It adds v1i128 to the appropriate register classes and checks parameter passing
and return values.
This is related to http://reviews.llvm.org/D9081, which will add instructions
that exploit the v1i128 datatype.
Phabricator review: http://reviews.llvm.org/D9475
llvm-svn: 236503
Summary:
When using the N64 ABI, element-indices use the i64 type instead of i32.
In many cases, we can use iPTR to account for this but additional patterns
and pseudo's are also required.
This fixes most (but not quite all) failures in the test-suite when using
N64 and MSA together.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9342
llvm-svn: 236494
When forming an IT block from the first MOV here:
%R2<def> = t2MOVr %R0, pred:1, pred:%CPSR, opt:%noreg
%R3<def> = tMOVr %R0<kill>, pred:14, pred:%noreg
the move in to R3 is moved out of the IT block so that later instructions on the same predicate can be inside this block, and we can share the IT instruction.
However, when moving the R3 copy out of the IT block, we need to clear its kill flags for anything in use at this point in time, ie, R0 here.
This appeases the machine verifier which thought that R0 wasn't defined when used.
I have a test case, but its extremely register allocator specific. It would be too fragile to commit a test which depends on the register allocator here.
llvm-svn: 236468
At the moment, all subregs defined by the SystemZ target can be modified
independently of the wider register. E.g. writing to a GR32 does not
change the upper 32 bits of the GR64. Writing to an FP32 does not change
the lower 32 bits of the FP64.
Hoewver, the upcoming support for the vector extension redefines FP64 as
one half of a V128. Floating-point operations leave the other half of
a V128 in an unpredictable state, so it's no longer the case that writing
to an FP32 leaves the bits of the underlying register (the V128) alone.
I'd prefer to have separate subreg_ names for this situation, so that
it's obvious at a glance whether we're talking about a subreg that leaves
the other parts of the register alone.
No behavioral change intended.
Patch originally by Richard Sandiford.
llvm-svn: 236433
We know what MemoryKind an operand has at the time we construct it,
so we might as well just record it in an unused part of the structure.
This makes it easier to add scatter/gather addresses later.
No behavioral change intended.
Patch originally by Richard Sandiford.
llvm-svn: 236432
It seems SystemZTargetLowering::getTargetNodeName got out of sync with
some recent changes to the SystemZISD opcode list. Add back all the
missing opcodes (and re-sort to the same order as SystemISelLowering.h).
llvm-svn: 236430
Removed code that was replicating v8i16 'shift + mask' implementation that is done more nicely by making use of LowerScalarImmediateShift
llvm-svn: 236388
This pass is responsible for constructing the EH registration object
that gets linked into fs:00, which is all it does in this change. In the
future, it will also insert stores to update the EH state number.
I considered keeping this functionality in WinEHPrepare, but it's pretty
separable and X86 specific. It has conceptually very little to do with
the task of WinEHPrepare, which is currently outlining. WinEHPrepare is
also in theory useful on ARM, but this logic is pretty x86 specific.
Reviewers: andrew.w.kaylor, majnemer
Differential Revision: http://reviews.llvm.org/D9422
llvm-svn: 236339
Converting from t2LDRs to tLDRr caused the shift argument to drop the internal flag. This would then throw machine verifier errors.
Unfortunately i'm having trouble reducing a test case. I'm going to keep trying, but so far its a scary combination of machine sinking, an 'and i1', loads feeding loads, and a bunch of code which shouldn't change IT block formation, but does. Its not useful to commit a test in that state as we have no way of knowing if it even hits this code reliably in future.
rdar://problem/20752113
llvm-svn: 236333
Functions with jump tables need an alignment of 4 because they use the ADR
instruction, which aligns the PC to 4 bytes before adding an offset.
Differential Revision: http://reviews.llvm.org/D9424
llvm-svn: 236327
Summary:
LI should never accept immediates larger than 32 bits.
The additional Is32BitImm boolean also paves the way for unifying the functionality that LA and LI have in common.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9289
llvm-svn: 236313
Summary:
Generate one DSLL32 of 0 instead of two consecutive DSLL of 16.
In order to do this I had to change createLShiftOri's template argument from a bool to an unsigned.
This also gave me the opportunity to rewrite the mips64-expansions.s test, as it was testing the same cases multiple times and skipping over other cases.
It was also somewhat unreadable, as the CHECK lines were grouped in a huge block of text at the beginning of the file.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8974
llvm-svn: 236311
This pass was generating 'Instruction does not dominate all uses!'
errors for programs which had loops with a condition variable that
depended on the result of a phi instruction from outside of the loop.
The pass was inserting new phi nodes outside of the loop which used values
defined inside the loop.
http://bugs.freedesktop.org/show_bug.cgi?id=90056
llvm-svn: 236306
If we move an instruction from one block down to a MOVC and predicate it,
then the original instruction could be moved in to a loop. In this case,
its invalid for any kill flags to remain on there.
Fails with -verfy-machineinstrs.
rdar://problem/20752113
llvm-svn: 236290
The expansion for t2ABS was always setting the kill flag on the rsb instruction.
It should instead only be set on rsb if it was set on the original ABS instruction.
rdar://problem/20752113
llvm-svn: 236272
This helps reduce the frequency of stack realignment prologues in 32-bit
X86 Windows code. Before this change and the corresponding clang change,
we would take the max of the type preferred alignment and the explicit
alignment on the alloca.
If you don't override aggregate alignment in datalayout, you get a
default of 8. This dates back to 2007 / r34356, and changing it seems
prohibitively difficult at this point.
llvm-svn: 236270
temporary.
Because of that:
1. The machine verifier was complaining on such code.
2. The generate code worked just because the thumb reduction size pass fixed the
opcode.
rdar://problem/20749824
llvm-svn: 236247
changes:
Don't apply on hexagon and NVPTX since they no longer claim to support UADDO/USUBO
Add location to getConstant
Drop comment about the ops being turned into expand
llvm-svn: 236240
This was breaking sqlite with the machine verifier because operand 0 was a def according to tablegen, but didn't have the 'isDef' flag set.
Looking at the ISA, its clear that this operand is a source as writing to st(0) is implicit. So move the operand to the correct place in the td file.
rdar://problem/20751584
llvm-svn: 236183
There's probably no way to test BXJ, but if the compiler ever did emit it
during CodeGen it would have to be a block terminator so "isBranch" is
appropriate.
BLX is more tricky. Clearly a call, but it affects surprisingly little.
rdar://18719544
llvm-svn: 236140
x86 Windows uses the '_' prefix for all global symbols, and this was
mistakenly being applied to frameescape labels, which are not externally
visible global symbols. They use the private global prefix 'L'.
The *right* way to fix this is probably to stop masquerading this label
as an ExternalSymbol and create a new SDNode type. These labels are not
"external", and we know they will be resolved by assembly time. Having a
custom SDNode type would allow us to do better X86 address mode
matching, so it's probably worth doing eventually.
llvm-svn: 236123
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Reg+%g0 is preferred to Reg+imm0 by the manual, and is what GCC produces.
Futhermore, reg+imm is invalid for the (not yet supported) "alternate
address space" instructions.
Differential Revision: http://reviews.llvm.org/D8753
llvm-svn: 236107
Summary:
The existing code was correct for 32-bit GPR's but not 64-bit GPR's. It now
accounts for both cases.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits, mohit.bhakkad, sagar
Differential Revision: http://reviews.llvm.org/D9337
llvm-svn: 236099
Summary:
Do the assemble-time shifts from createLShiftOri at the source, which groups all the shifting together, closer to the main logic path, and
store the results in concisely-named variables to improve code clarity.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8973
llvm-svn: 236096
We were trying to look through COPY instructions, but only to the next
instruction in a BB and incorrectly anyway. The cases where that would actually
be a good idea are rare enough (and not even tested!) that it's not worth
trying to get right.
rdar://20721342
llvm-svn: 236050
We don't need codegen-only intrinsic instructions for the vector forms of these instructions.
This makes the reciprocal estimate instruction lowering identical to how we handle normal
square roots: (V)SQRTPS / (V)SQRTPD.
No existing regression tests fail with this patch.
Differential Revision: http://reviews.llvm.org/D9301
llvm-svn: 236013
Fixes a crash with basically any OpenGL application using the radeonsi
driver.
Patch by: Michel Dänzer
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=90176
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 236004
llc converts all feature strings to lower case, while the LLVM C API
does not, so we need a lower case alias in order to test this with llc.
llvm-svn: 236003
We need to track if an AddrSpaceCast expression was seen when
generating an MCExpr for a ConstantExpr. This change introduces a
custom lowerConstant method to the NVPTX asm printer that will create
NVPTXGenericMCSymbolRefExpr nodes at the appropriate places to encode
the information that a given symbol needs to be casted to a generic
address.
llvm-svn: 236000
This is a preliminary step to using the IR-level floating-point fast-math-flags in the SDAG (D8900).
In this patch, we introduce the optimization flags as their own struct. As noted in the TODO comment,
we should eventually share this data between the IR passes and the backend.
We also switch the existing nsw / nuw / exact bit functionality of the BinaryWithFlagsSDNode class to
use the new struct.
The tradeoff is that instead of using the free but limited space of SDNode's SubclassData, we add a
data member to the subclass. This means we don't have to repeat all of the get/set methods per flag,
but we're potentially adding size to all nodes of this subclassi type.
In practice on 64-bit systems (measured on Linux and MacOS X), there is no size difference between an
SDNode and BinaryWithFlagsSDNode after this change: they're both 80 bytes. This means that we had at
least one free byte to play with due to struct alignment.
Differential Revision: http://reviews.llvm.org/D9325
llvm-svn: 235997
Summary: If the immediate is 0, the ORi is pointless.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8969
llvm-svn: 235990
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
Summary: The new name is more accurate with regard to the functionality.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8968
llvm-svn: 235984
Summary: This removes multiple calls to getReg() and saves us column space in the source file.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8924
llvm-svn: 235978
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
This matches other assemblers and is less unexpected (e.g. PR23227).
On ELF, I tried binutils gas v2.24 and nasm 2.10.09, and they both
agree on LShr. On COFF, I couldn't get my hands on an assembler yet,
so don't change the behavior. For now, don't change it on non-AArch64
Darwin either, as the other assembler is gas v1.38, which does an AShr.
llvm-svn: 235963
After legalization, scalar SETCC has an i32 result type on AArch64.
The i1 requirement seems too conservative, replace it with an assert.
This also means that we now can run after legalization. That should also
be fine, since the ops legalizer runs again after each combine, and
all types created all have the same sizes as the (legal) inputs.
Exposed by r235917; while there, robustize its tests (bsl also uses the
register it defines).
llvm-svn: 235922
When the setcc has f64 operands, we can't build a vector setcc mask
to feed a vselect, because f64 doesn't divide v3f32 evenly.
Just bail out when that happens.
llvm-svn: 235917
This patch adds a new SSA MI pass that runs on little-endian PPC64
code with VSX enabled. Loads and stores of 4x32 and 2x64 vectors
without alignment constraints are accomplished for little-endian using
lxvd2x/xxswapd and xxswapd/stxvd2x. The existence of the additional
xxswapd instructions hurts performance in comparison with big-endian
code, but they are necessary in the general case to support correct
semantics.
However, the general case does not apply to most vector code. Many
vector instructions are lane-insensitive; they do not "care" which
lanes the parallel computations are performed within, provided that
the resulting data is stored into the correct locations. Thus this
pass looks for computations that perform only lane-insensitive
operations, and remove the unnecessary swaps from loads and stores in
such computations.
Future improvements will allow computations using certain
lane-sensitive operations to also be optimized in this manner, by
modifying the lane-sensitive operations to account for the permuted
order of the lanes. However, this patch only adds the infrastructure
to permit this; no lane-sensitive operations are optimized at this
time.
This code is heavily exercised by the various vectorizing applications
in the projects/test-suite tree. For the time being, I have only added
one simple test case to demonstrate what the pass is doing. Although
it is quite simple, it provides coverage for much of the code,
including the special case handling of copies and subreg-to-reg
operations feeding the swaps. I plan to add additional tests in the
future as I fill in more of the "special handling" code.
Two existing tests were affected, because they expected the swaps to
be present, but they are now removed.
llvm-svn: 235910
Use a loop instruction with a constant extender for a hardware
loop instruction that is too far away from the start of the loop.
This is cheaper than changing the SA register value.
Differential Revision: http://reviews.llvm.org/D9262
llvm-svn: 235882
Summary:
Changed the warning message to show the current value of $at, similar to what clang does for typedef's, and renamed warnIfAssemblerTemporary to a more descriptive name.
I also changed the type of variables which store registers from int to unsigned, updated the relevant test and tried to make the related comments clearer.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8479
llvm-svn: 235881
This reapplies r235194, which was reverted in r235495 because it was causing a
failure in our out-of-tree buildbots for MIPS. With the sign-extension patch
in r235718, this patch doesn't cause any problem any more.
llvm-svn: 235878
Patch to allow int8 vectors to be multiplied on the SSE unit instead of being scalarized.
The patch sign extends the i8 lanes to i16, uses the SSE2 pmullw multiplication instruction, then packs the lower byte from each result.
Differential Revision: http://reviews.llvm.org/D9115
llvm-svn: 235837
Summary:
Perform integer extension only when the destination type is one of
i8, i16 & i32 and when the source type is i1, i8 or i16. For other
combinations we fall back to SelectionDAG.
This fixes the test MultiSource/Benchmarks/7zip that was failing in our
out-of-tree MIPS buildbots.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9243
llvm-svn: 235718
Summary:
Fixes a bug in the NVPTX codegen. The code used to miss necessary "generic()"
on aggregates of addrspacecasts.
Test Plan: addrspacecast-gvar.ll
Reviewers: eliben, jholewinski
Reviewed By: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9130
llvm-svn: 235689
Match binutils by supporting the optional register name prefix for new vector
registers ("vs" for VSX registers and "q" for QPX registers).
llvm-svn: 235665
Add assembler/disassembler support for dcbt/dcbtst (and aliases) with the hint
field specified (non-zero). Unforunately, the syntax for this instruction is
special in that it differs for server vs. embedded cores:
dcbt ra, rb, th [server]
dcbt th, ra, rb [embedded]
where th can be omitted when it is 0. dcbtst is the same. Thus we need to play
games in the parser and the printer to flip the operands around on the embedded
cores. We'll use the server syntax as the default (binutils currently uses the
embedded form by default, but IBM is changing that).
We also stop marking dcbtst as having unmodeled side effects (this is not
necessary, it is just a hint like dcbt -- noticed by inspection, so no separate
test case).
llvm-svn: 235657
When the base register index of the vector plus the constant offset
was less than zero, we were passing the wrong base register to the indirect
addressing instruction.
In this case, we need to set the base register to v0 and then add
the computed (negative) index to m0.
llvm-svn: 235641
The order in which branches appear in ImmBranches is approximately their
order within the function body. By visiting later branches first, we reduce
the distance between earlier forward branches and their targets, making it
more likely that the cbn?z optimization, which can only apply to forward
branches, will succeed for those earlier branches.
Differential Revision: http://reviews.llvm.org/D9185
llvm-svn: 235640
In particular, this preserves the kill flag, which allows the Thumb2 cbn?z
optimization to be applied in cases where a branch has been re-created after
the live variables analysis pass, e.g. by the machine block placement pass.
This appears to be low risk; a number of other targets seem to already be
doing something similar, e.g. AArch64, PowerPC.
Differential Revision: http://reviews.llvm.org/D9184
llvm-svn: 235639
This allows the constant island pass to lower these branches to cbn?z
instructions, resulting in a shorter instruction sequence.
Differential Revision: http://reviews.llvm.org/D9183
llvm-svn: 235638
This makes it more likely that we can use the 16-bit push and pop instructions
on Thumb-2, saving around 4 bytes per function.
Differential Revision: http://reviews.llvm.org/D9165
llvm-svn: 235637
This appears to have been introduced back in r76698 as part of an unrelated
change. I can find no official ARM documentation stating that Thumb-2 functions
require 4-byte alignment; in fact, ARM documentation appears to contradict
this (see, e.g., ARM Architecture Reference Manual Thumb-2 Supplement,
section 2.6.1: "Thumb-2 enforces 16-bit alignment on all instructions.").
Also remove code that sets alignment for ARM functions, which is redundant
with code in the MachineFunction constructor, and remove the hidden
-arm-align-constant-islands flag, which has been enabled by default since
r146739 (Dec 2011) and has probably received sufficient testing by now.
Differential Revision: http://reviews.llvm.org/D9138
llvm-svn: 235636
Summary:
We pick this order because SeparateConstOffsetFromGEP may create more
opportunities for SLSR.
Test Plan:
reassociate-geps-and-slsr.ll
no performance regression on internal benchmarks
Reviewers: meheff
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D9230
llvm-svn: 235632
TableGen had been nicely generating code to print a number of instructions using
shorter aliases (and PowerPC has plenty of short mnemonics), but we were not
calling it. For some of the aliases we support in the parser, TableGen can't
infer the "inverse" alias relationship, so there is still more to do.
Thus, after some hours of updating test cases...
llvm-svn: 235616
Summary:
Constant stores of f16 vectors can create NvCast nodes from various
operand types to v4f16 or v8f16 depending on patterns in the stored
constants. This patch adds nvcast rules with v4f16 and v8f16 values.
AArchISelLowering::LowerBUILD_VECTOR has the details on which constant
patterns generate the nvcast nodes.
Reviewers: jmolloy, srhines, ab
Subscribers: rengolin, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D9201
llvm-svn: 235610
Summary:
Set operation action for SINT_TO_FP and UINT_TO_FP nodes with v4i32,
v8i8, v8i16 inputs to allow promotion of v4f16 results.
Add tests for sitofp and uitofp for vec4, vec8, vec16, and i8, i16, i32,
and i64 vectors. Only missing tests are for v16i8 and v16i16 as the
shift operations are too complicated to write a proper check sequence.
The conversions from v4i64 to v4f16 do not depend on this patch - v4i64
is split and the conversion gets handled while lowering v2i64. I am
adding a test here for completeness.
Reviewers: aemerson, rengolin, ab, jmolloy, srhines
Subscribers: rengolin, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D9166
llvm-svn: 235609
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
llvm-svn: 235608
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235560
The CondOpt pass currently uses LiveIntervals to set the dead flag on a def. This patch uses MachineRegisterInfo::use_empty instead as that is equivalent to the def being dead.
This removes an instance of LiveIntervals in the pass manager pipeline and saves 3.8% of compile time on llc conpiled for AArch64.
Reviewed by Chad Rosier and Zhaoshi.
llvm-svn: 235532
This fixes a regression introduced at revision 218263.
On AVX, if we optimize for size, a splat build_vector of a load
is lowered into a VBROADCAST node. This is done even if the value type of the
splat build_vector node is v2i64.
Since AVX doesn't support v2f64/v2i64 broadcasts, revision 218263 added two
extra tablegen patterns to allow selecting a VMOVDDUPrm from an X86VBroadcast
where the scalar element comes from a loadi64/loadf64.
However, revision 218263 forgot to add an extra fallback pattern for the case
where we have a X86VBroadcast of a loadi64 with multiple uses.
This patch adds the missing tablegen pattern in X86InstrSSE.td.
This patch also adds an extra test to 'splat-for-size.ll' to verify that ISel
doesn't crash with a 'fatal error in the backend' due to a missing AVX pattern
to select v2i64 X86ISD::BROADCAST nodes.
llvm-svn: 235509
Enough concerns were raised that this optimization is pessimising some code patterns.
The obvious fix, to add a Reassociate run afterwards, causes even more pessimisation in some cases due to fewer complex addressing modes being matched. As there isn't a trivial fix for this, backing this out by default until someone gets a chance to fix the addressing mode matcher.
llvm-svn: 235491
X86 backend.
The code generated for symbolic targets is identical to the code generated for
constant targets, except that a relocation is emitted to fix up the actual
target address at link-time. This allows IR and object files containing
patchpoints to be cached across JIT-invocations where the target address may
change.
llvm-svn: 235483
With SSE2, we can generate a 'movq' or other 64-bit store op on a 32-bit system
even though 64-bit integers are not legal types.
So instead of producing this:
pshufd $229, %xmm0, %xmm1 ## xmm1 = xmm0[1,1,2,3]
movd %xmm0, (%eax)
movd %xmm1, 4(%eax)
We can do:
movq %xmm0, (%eax)
This is a fix for the problem noted in D7296.
Differential Revision: http://reviews.llvm.org/D9134
llvm-svn: 235460
Summary:
With D9096 and D9101, there's no need to run DCE after SLSR and
SeparateConstOffsetFromGEP.
Test Plan: no regression
Reviewers: jholewinski, meheff
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9172
llvm-svn: 235415
There doesn't seem to be a reason to perform this target ISD node matching
in an DAGCombine, moving it to lowering fixes PR23296.
Differential Revision: http://reviews.llvm.org/D9137
llvm-svn: 235394
Summary:
This directive is exactly the same as .asciz, except it's only used by MIPS.
It is used to store null terminated strings in object files.
Reviewers: rafael, dsanders, echristo
Reviewed By: dsanders, echristo
Subscribers: echristo, llvm-commits
Differential Revision: http://reviews.llvm.org/D7530
llvm-svn: 235382
Summary:
The 64-bit version of the variable shift instructions uses the
shift_rotate_reg class which uses a GPR32Opnd to specify the variable
shift amount. With this patch we avoid the generation of a redundant
SLL instruction for the variable shift instructions in 64-bit targets.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7413
llvm-svn: 235376
This is an updated version of Chandler's patch D7402 that got accepted but never committed, and has bit-rotted a bit since.
I've updated the execution domain declarations to match the approach of the packed templates and also added some extra scalar unary tests.
Differential Revision: http://reviews.llvm.org/D9095
llvm-svn: 235372
X86ISD::ADDSUB, X86ISD::(F)HADD, X86ISD::(F)HSUB should not be selected
if the operand types do not match the result type because vector type
legalization cannot deal with this for custom nodes.
Testcase X86ISD::ADDSUB is attached. I could not create a testcase for
the FHADD/FHSUB cases because of: https://llvm.org/bugs/show_bug.cgi?id=23296
Differential Revision: http://reviews.llvm.org/D9120
llvm-svn: 235367
Summary:
Set operation action for FP16 conversion opcodes, so the Op legalizer
can choose the gnu_* libcalls for Mips.
Set LoadExtAction and TruncStoreAction for f16 scalars and vectors to
prevent (fpext (load )) and (store (fptrunc)) from getting combined into
unsupported operations.
Added test cases to test that these operations are handled correctly
for f16 scalars and vectors. This patch depends on
http://reviews.llvm.org/D8755.
Reviewers: srhines
Subscribers: llvm-commits, ab
Differential Revision: http://reviews.llvm.org/D8804
llvm-svn: 235341
This fixes a regression introduced at revision 231243.
The target-independent selection algorithm in FastISel knows how to select
a SINT_TO_FP if the target is SSE but not AVX. That is because on X86, the
tablegen'd 'fastEmit' functions know how to select CVTSI2SSrr and CVTSI2SDrr.
Method X86FastISel::X86SelectSIToFP was therefore working under the
wrong assumption that the target was AVX. That assumption was incorrect since
we can have a target that is neither AVX nor SSE.
So, rather than asserting for the presence of AVX, we should have had an
early exit from 'X86SelectSIToFP' if the target was not AVX.
This patch fixes the issue replacing the invalid assertion with an early exit.
Thanks to Dimitry Andric for reporting this problem and for providing a small
reproducible testcase. Added test pr23273.ll.
llvm-svn: 235295
The fix ensures that scalar sources inserted into a vector are the correct bit size.
Integer scalar sources from BUILD_VECTOR and SCALAR_TO_VECTOR nodes may require truncation that this function doesn't currently support.
llvm-svn: 235281
The result is either an Untyped reg sequence, on ldN with N > 1, or
just the type of the input vector, on ld1. Don't force Untyped.
Instead, just use the type of the reg sequence.
This mirrors the behavior of createTuple, which feeds the LD1*_POST.
The narrow code path wasn't actually covered by tests, because V64
insert_vector_elt are widened to V128 before the LD1LANEpost combine
has the chance to run, usually.
The only case where it does run on V64 vectors is if the vector ops
legalizer ran. So, tickle the code with a ctpop.
Fixes PR23265.
llvm-svn: 235243
Summary: Implement the method FastMaterializeAlloca in Mips fast-isel
Based on a patch by Reed Kotler.
Test Plan:
Passes test-suite at O0/O2 for mips32 r1/r2
fastalloca.ll
Reviewers: dsanders, rkotler
Subscribers: rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6742
llvm-svn: 235213
Summary:
Add shift operators implementation to fast-isel for Mips. These are shift ops
for non legal forms, i.e. i8 and i16.
Based on a patch by Reed Kotler.
Test Plan:
Reviewers: dsanders
Subscribers: echristo, rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6726
llvm-svn: 235194
Summary:
Previously, the presence of KILL instructions would block valid candidates
from filling a specific delay slot. With the elimination of the KILL
instructions, in the appropriate range, we are able to fill more slots and
keep the information from future def/use analysis consistent.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D7724
llvm-svn: 235183
Summary:
For example, a common idiom was 'isN64 ? Mips::SP_64 : Mips::SP'. This has
been moved to MipsABIInfo and replaced with 'ABI.GetStackPtr()'.
There are others that should also be moved. This patch sticks to the ones that
are obviously non-functional. The others have minor mistakes that need fixing
at the same time, mostly involving checks for 64-bit GPR's instead of checks
for 64-bit pointers.
Reviewers: tomatabacu
Reviewed By: tomatabacu
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8972
llvm-svn: 235173
Found by code inspection, but breaking i16 at least breaks other tests.
They aren't checking this in particular though, so also add some
explicit tests for the already working types.
llvm-svn: 235148
A big-endian vector return needs a byte-swap which we aren't doing right now.
For now just bail on these cases to get correctness back.
llvm-svn: 235133
Fixed compilation with clang on some buildbots with "-Werror -Wmissing-field-initializers"
Related to: http://reviews.llvm.org/rL235089
llvm-svn: 235099
Summary: Previously, this was only happening for functions, but because of .insn, objects can also be marked now.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8007
llvm-svn: 235095
In order to introduce v8.1a-specific entities, Mappers should be aware of SubtargetFeatures available.
This patch introduces refactoring, that will then allow to easily introduce:
- v8.1-specific "pan" PState for PStateMapper (PAN extension)
- v8.1-specific sysregs for SysRegMapper (LOR,VHE extensions)
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8496
Patch by Tom Coxon
llvm-svn: 235089
Summary:
This assembler directive marks the current label as an instruction label in microMIPS and MIPS16.
This initial implementation works only for microMIPS.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8006
llvm-svn: 235084
BXJ was incorrectly said to be unsupported in ARMv8-A. It is not
supported in the A64 instruction set, but it is supported in the T32
and A32 instruction sets, because it's listed as an instruction in the
ARM ARM section F7.1.28.
Using SP as an operand to BXJ changed from UNPREDICTABLE to
PREDICTABLE in v8-A. This patch reflects that update as well.
This was found by MCHammer.
llvm-svn: 235024
This is a 1-line patch (with a TODO for AVX because that will affect
even more regression tests) that lets us substitute the appropriate
64-bit store for the float/double/int domains.
It's not clear to me exactly what the difference is between the 0xD6 (MOVPQI2QImr) and
0x7E (MOVSDto64mr) opcodes, but this is apparently the right choice.
Differential Revision: http://reviews.llvm.org/D8691
llvm-svn: 235014
Set the transform bar at 2 divisions because the fastest current
x86 FP divider circuit is in SandyBridge / Haswell at 10 cycle
latency (best case) relative to a 5 cycle multiplier.
So that's the worst case for this transform (no latency win),
but multiplies are obviously pipelined while divisions are not,
so there's still a big throughput win which we would expect to
show up in typical FP code.
These are the sequences I'm comparing:
divss %xmm2, %xmm0
mulss %xmm1, %xmm0
divss %xmm2, %xmm0
Becomes:
movss LCPI0_0(%rip), %xmm3 ## xmm3 = mem[0],zero,zero,zero
divss %xmm2, %xmm3
mulss %xmm3, %xmm0
mulss %xmm1, %xmm0
mulss %xmm3, %xmm0
[Ignore for the moment that we don't optimize the chain of 3 multiplies
into 2 independent fmuls followed by 1 dependent fmul...this is the DAG
version of: https://llvm.org/bugs/show_bug.cgi?id=21768 ...if we fix that,
then the transform becomes even more profitable on all targets.]
Differential Revision: http://reviews.llvm.org/D8941
llvm-svn: 235012
Summary:
MSP430 doesn't seem to have any additional constraints. Therefore remove
the target hook.
No functional change intended.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8208
llvm-svn: 235003
Summary:
Refactor MipsAsmParser::getATReg to return an internal register number instead of a register index.
Also change all the int's to unsigned, seeing as the current AT register index is stored as an unsigned in MipsAssemblerOptions.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8478
llvm-svn: 234996
The ARMv8 ARMARM states that for these instructions in A64 state:
"Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.", (imm4 for INS).
Make the disassembler accept any encoding with these ignored bits set to 1.
llvm-svn: 234896
This pass will always try to insert llvm.SI.ifbreak intrinsics
in the same block that its conditional value is computed in. This is
a problem when conditions for breaks or continue are computed outside
of the loop, because the llvm.SI.ifbreak intrinsic ends up being inserted
outside of the loop.
This patch fixes this problem by inserting the llvm.SI.ifbreak
intrinsics in the loop header when the condition is computed outside
the loop.
llvm-svn: 234891