There is one result per lookup symbol, so we have to advance the result iterator no matter whether it's NULL or not.
MissingSymbols variable is unused.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D91707
implementation.
This patch aims to improve support for out-of-process JITing using OrcV2. It
introduces two new class templates, OrcRPCTargetProcessControlBase and
OrcRPCTPCServer, which together implement the TargetProcessControl API by
forwarding operations to an execution process via an Orc-RPC Endpoint. These
utilities are used to implement out-of-process JITing from llvm-jitlink to
a new llvm-jitlink-executor tool.
This patch also breaks the OrcJIT library into three parts:
-- OrcTargetProcess: Contains code needed by the JIT execution process.
-- OrcShared: Contains code needed by the JIT execution and compiler
processes
-- OrcJIT: Everything else.
This break-up allows JIT executor processes to link against OrcTargetProcess
and OrcShared only, without having to link in all of OrcJIT. Clients executing
JIT'd code in-process should start linking against OrcTargetProcess as well as
OrcJIT.
In the near future these changes will enable:
-- Removal of the OrcRemoteTargetClient/OrcRemoteTargetServer class templates
which provided similar functionality in OrcV1.
-- Restoration of Chapter 5 of the Building-A-JIT tutorial series, which will
serve as a simple usage example for these APIs.
-- Implementation of lazy, cross-target compilation in lli's -jit-kind=orc-lazy
mode.
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.
The new scheme provides the following benefits and guarantees:
(1) Queries that do not need to attempt definition generation (because all
requested symbols matched against existing definitions in the JITDylib)
can proceed without being blocked by any running definition generators.
(2) Definition generators can capture the LookupState to continue their work
asynchronously. This allows generators to run for an arbitrary amount of
time without blocking a thread. Definition generators that do not need to
run asynchronously can return without capturing the LookupState to eliminate
unnecessary recursion and improve lookup performance.
(3) Definition generators still do not need to worry about concurrency or
re-entrance: Since they are still run under a (per-dylib) lock, generators
will never be re-entered concurrently, or given overlapping symbol sets to
generate.
Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
TPCDynamicLibrarySearchGenerator was generating errors on missing
symbols, but that doesn't fit the DefinitionGenerator contract: A symbol
that isn't generated by a particular generator should not cause an
error.
This commit fixes the error by using SymbolLookupFlags::WeaklyReferencedSymbol
for all elements of the lookup, and switches llvm-jitlink to use
TPCDynamicLibrarySearchGenerator.
TPCDynamicLibrarySearchGenerator uses a TargetProcessControl instance to
load libraries and search for symbol addresses in a target process. It
can be used in place of a DynamicLibrarySearchGenerator to enable
target-process agnostic lookup.