Right now the Attributor defaults to 32 fixed point iterations unless it is set
explicitly by a command line flag. This patch allows this to be configured when
the attributor instance is created. The maximum is then increased in OpenMPOpt
if the target is a kernel. This is because the globalization analysis can result
in larger iteration counts due to many dependent instances running at once.
Depends on D102444
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104416
Summary:
Currently the attributor needs to give up if a function has external linkage.
This means that the optimization introduced in D97818 will only apply to static
functions. This change uses the Attributor to internalize OpenMP device
routines by making a copy of each function with private linkage and replacing
the uses in the module with it. This allows for the optimization to be applied
to any regular function.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102824
This should fix PR50683. The wrong assumption was that we
could always know what the callee is when we replace a call site
argument with undef. We wanted to know that to remove the `noundef`
that might be attached to the argument. Since no callee means we
did the propagation on the caller site, there is no need to remove
an attribute. It is only needed if we replace all uses and therefore
pass `undef` instead of the value that was passed in otherwise.
To allow outside AAs that simplify values we need to ensure all value
simplification goes through the Attributor, not AAValueSimplify (or any
of the other AAs we have already like AAPotentialValues). This patch
also introduces an interface for the outside AAs to register
simplification callbacks for an IRPosition. To make this work as
expected we have to pass IRPositions instead of Values in
AAValueSimplify, which makes sense by itself.
If we simplify values we sometimes end up with type mismatches. If the
value is a constant we can often cast it though to still allow
propagation. The logic is now put into a helper and it replaces some
ad hoc things we did before.
This also introduces the AA namespace for abstract attribute related
functions and types.
Differential Revision: https://reviews.llvm.org/D103856
This attribute computes the optimistic live call edges using the attributor
liveness information. This attribute will be used for deriving a
inter-procedural function reachability attribute.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104059
If we simplify values we sometimes end up with type mismatches. If the
value is a constant we can often cast it though to still allow
propagation. The logic is now put into a helper and it replaces some
ad hoc things we did before.
This also introduces the AA namespace for abstract attribute related
functions and types.
We have seen various problems when the call graph was not updated or
the updated did not succeed because it involved functions outside the
SCC. This patch adds assertions and checks to avoid accidentally
changing something outside the SCC that would impact the call graph.
It also prevents us from reanalyzing functions outside the current
SCC which could cause problems on its own. Note that the transformations
we do might cause the CG to be "more precise" but the original one would
always be a super set of the most precise one. Since the call graph is
by nature an approximation, it is good enough to have a super set of all
call edges.
The constant value lattice looks like this
```
<None>
|
<undef>
/ | \
... <0> ...
\ | /
<unknown>
```
We did not account for the undef and assumed a value meant we could not
change anymore. Now we actually check if we have the same value as
before, which will signal CHANGED to the users when we go from undef to
a specific constant.
This fixes, among other things, the bug exposed by @ipccp4 in
`value-simplify.ll`.
This patch makes it possible to do call site specific deductions
for AAValueSimplification and AAIsDead.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84722
Follow up to a6d2a8d6f5. This covers all the public interfaces of the bundle related code. I tried to cleanup the internals where the changes were obvious, but there's definitely more room for improvement.
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
This patch makes uses of the context bridges introduced in D83299 to make
AAValueConstantRange call site specific.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83744
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
This was reported as PR49104. The reproducer uses varargs but the issue
is the same, we know an argument is dead but can't change the signature
for some reason. The PR49104 situation was: We are in an CG-SCC
traversal and we remove all the uses of an argument and proof it thereby
dead. However, if we do not remove the argument, via signature rewrite,
we need to ensure that the `undef` we introduce at the call site doesn't
clash with a `noundef` attribute.
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
Before we used to only mark unreachable static functions as dead if all
uses were known dead. Now we optimistically assume uses to be dead until
proven otherwise.
D85703 will need to create shallow wrappers in order to track the spmd icv. We need to make it available.
Differential Revision: https://reviews.llvm.org/D89342
As we handle callback calls we need to disambiguate the call site
argument number from the callee argument number. While always equal in
non-callback calls, a callback comes with a partial parameter-argument
mapping so there is no implicit correspondence. Here we split
`IRPosition::getArgNo()` into two public functions, `getCallSiteArgNo()`
and `getCalleeArgNo()`. Usages are adjusted to pick the right one for
their purpose. This fixed some problems that would have been exposed as
we more aggressively optimize callbacks.
While operand bundles carry unpredictable semantics, we know some of
them and can therefore "ignore" them. In this case we allow to look at
the declaration of `llvm.assume` when asked for the attributes at a call
site. The assume operand bundles we have do not invalidate the
declaration attributes.
We cannot test this in isolation because the llvm.assume attributes are
determined by the parser. However, a follow up patch will provide test
coverage.
In `MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4.cpp` we initialized
attributes until stack frame ~35k caused space to run out. The initial
size 1024 is pretty much random.
The CloneFunctionInto has implicit requirements with regards to the
linkage and visibility of the function. We now update these after we did
the CloneFunctionInto on the copy with the same linkage and visibility
as the original.
Deleting or replacing anything is certainly a modification. This caused
a later assertion in IPSCCP when compiling 400.perlbench with the new PM.
I'm not sure how to test this.
The problem with module slice has been addressed in D86319
Introduce two new AAs. AAICVTrackerFunctionReturned which checks if a
function can have a unique ICV value after it is finished, and
AAICVCallSiteReturned which checks AAICVTrackerFunctionReturned for a
call site. This enables us to check the value of a call and if it
changes the ICV. This also changes the approach in
`getReplacementValues()` to a worklist-based approach so we can explore
all relevant BBs.
Differential Revision: https://reviews.llvm.org/D85544
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
Even though `noundef` IR attribute might be attached to non-void type values, AANoUndef is mistakenly identified for pointer type values only.
This patch fixes that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86737
If we query an AA with `Attributor::getAAFor` in `AbstractAttribute::manifest`, the AA may be updated.
This patch makes use of the phase flag in Attributor, and handle `getAAFor` behavior according to the flag.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86635
Add a new flag that indicates which stage in the process we are in.
This flag is introduced for handling behavior of `getAAFor` according to the stage. (discussed in D86635)
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86678
Currently, an undef value is reduced to 0 when it is added to a set of potential values.
This patch introduces a flag for under values. By this, for example, we can merge two states `{undef}`, `{1}` to `{1}` (because we can reduce the undef to 1).
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85592
- Adds a command line option to seed only selected functions.
- Makes seed allow listing exclusive to assertions enabled builds.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D86129
This commits breaks certain OpenMP codes (on power) because it expanded
the Attributor scope without telling the Attributor about the SCC
extend. See: https://reviews.llvm.org/D85544#2227611
This reverts commit b0b32e6490.
Introduce two new AAs. AAICVTrackerFunctionReturned which checks if a
function can have a unique ICV value after it is finished, and
AAICVCallSiteReturned which checks AAICVTrackerFunctionReturned for a
call site. This enables us to check the value of a call and if it
changes the ICV. This also changes the approach in
`getReplacementValues()` to a worklist-based approach so we can explore
all relevant BBs.
Differential Revision: https://reviews.llvm.org/D85544
This patch introduces a new abstract attribute `AANoUndef` which corresponds to `noundef` IR attribute and deduce them.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85184